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ABSTRACT
The aim of this paper is to assess how well the equation
ngtn, temn -un -¢n . =0

describes the propagation of water waves in a laboratory experiment. Here
X 1is the horizontal coordinate, t is the time, n 1is the displacement of
the surface of the water from its equilibrium position and uy is a real
constant.

A numerical scheme has been developed to solve the above equation for
X, t > 0, subject to the initial condition n(x,0) = 0 and to the boundary
condition n(0,t) = h(t), where h 1is a specified function. In the present
context, h can be thought of as an amplitude at one end of a long channel.
The numerical scheme that has been used is an explicit, unconditionally stable
scheme having fourth-order accuracy in both space and time. A rigorous analy-
sis of the errors inherent in the numerical scheme, as well as convergence
tests of the code, are presented.

Quantitative camparisons between the model and our laboratory experiments
typically showed differences of around 8%, increasing to about 30% at the
larger wave amplitudes used in the experiments. The agreement was found to be
considerably worse than this if damping of the waves was not included (i.e.,
if uw = 0). An interpretation of the experimental results in terms of the
model equation is given and attempts are made to assess some of the factors

leading to the observed differences at the larger amplitudes.
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1.  INTRODUCTION

This study attempts to assess a particula} model for the
unidirectional propagation of water waves as a predictor of the
results of a set of laboratory experiments. Although the first
one-dimensional model for the propagation of weakly nonlinear
waves in shallow water was proposed last century (Korteweg & de
Vries 1895) it is only in recent years that any serious attempts
have been made to test this model in practice. The main reasons
for the long delay, with regard to this and similar models, derive
from the difficulty in obtaining solutions to the equations, other
than the rather special solitary-wave and cnoidal-wave solutions.
However, it is now feasible to devise sound numerical schemes to
integrate some of the model equations: we shall propose one such
scheme, for a particular model, and use it to test how well the
model describes the experimental situation.

To a certain extent such a programme has been carried out by
Zabusky & Galvin (1971) and by Hammack & Segur (1974). Both these
studies suggested that the Korteweg-de Vries equation (henceforth
to be referred to as the KdV equation) gave a reasonably good
qualitative account of the experiments. But the quantitative
agreement was not striking, mainly because the studies were made
under conditions to which the model should not necessarily be
expected to apply and because the comparison procedures involving
an approximate transformation of the initial data can lead to
significant errors (cf. appendix A).

An important part of the present work is the numerical
integration of the model equation under scrutiny. Since the

interpretation of laboratory experiments inevitably gives rise to
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many difficulties, it seemed appropriate to be absolutely sure that
the numerical solutions were close approximations to the solutions
of the model equations. Thus, in §3 we give, a detailed account
of the numerical schemes employed, together with rigorous estimates
of the error bounds and convergence tests of the scheme.

The structure of the paper is as follows. In §2 we first
discuss model equations apposite to the present study, together with
the concomitant assumptions built in during the modelling, and then
examine the more important empirical design criteria. Some
theoretical properties of the solutions to the model to be tested are
given in §3. These are needed for the error estimates for the
numerical scheme which is described and analyzed.j11§§4,5. Convergence
tests for the scheme are also given. In §6 the experimental
procedure is described and in {7 the main results are presented.

At the smaller amplitudes used in the experiments the model equation
appears to have given a fairly good description of the experimental
results, but at larger amplitudes the model did not work so well.

Some possible sources for these discrepancies are examined in §§ 1.4,

7.5. A résuné of the main results is given in §8.

2.  EXPERIMENTAL DESIGN

2.1 Model equations

Consider two-dimensional surface waves propagating along a
uniform horizontal channel. Suppose that the waves propagate only
in the positive x-direction and that the undisturbed depth of the
liquid in the channel is d. All the variables used here are
dimensionless;, with the length scale taken to be the equilibrium

1
depth, d,and the time scale to be (d/g)? , g being the acceleration

due to gravity. Let t be the time and let T]=1]Ct,t) represent the

L
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vertical displacement of the surface of the liquid from its
equilibrium position. The horizontal coordinate x is measured
along the channel. If the horizontal scale, §! , of the motions
is large and the maximum amplitude £ of the waves is sufficiently
small, then a model for the propagation of irrotational waves is

afforded by the KdV equation (see Whitham 1974)

Y]t + T]x + %’T”]x + é_’]x’ﬁx = 0. (Kdv)

The primary temms Mes M= Tepresent a uniform translation of a wave
and it is proposed that the secondary terms account respectively
for the modification of the wave through the separate influences
of nonlinear and ciispersive effects. "The relative importance of
the nonlinear and the dispersive effects is given by the parameter
= ¢8* , an important assumption in the derivation of KdV
being that this parameter is O(1) (cf. Meyer 1972, Whitham 1974).+
These considerations suggest the introduction of a new dependent

variable N and new independent variables §,7 such that
n=eN, x=€¢"£ , t=e¢"t

Thus, by assumption, N and its derivatives with respect to the new
independent variables are all 0(1), and it follows that (KdV) can

be written as
T £ +gENN€ + éENagiz O(Cz)’ (2.2)

showing explicitly the relative sizes of the various terms. (On the

——

+ Here, and in what follows, the symbol O(-) will be used informally in the
way that is common in the construction and formal analysis of model
equations for physical phenomena. A strict usage could be maintained in
which the relevant limit is £+0, §¥0, S constant.

For waves of wavelength A and amplitude a, S = ar/d?.
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right-hand-side of (2.2) we héve indicated the relative size of the
terms neglected in the formal derivation of the KdV model). A
physical interpretation of (2.2) is that the small nonlinear and
dispersive corrections can accumulate and, on time scales T of o(g'j
(or t= O(e’aﬁ)), have made important modifications to the initial
waveform. Moreoever, since the terms neglected in (2.2) are O(Ez),
it follows that, on time scales T = 0(e?) (or t= O(E-%)) ,
the model can no longer be formally justified.

Because of the orders of magnitude of the terms in (2.2) an
alternative model for the same physical situation, valid to the same
accuracy as the KdV equation, is the equation (see Peregrine 1966,

Benjamin et al, 1972)
3 ! —
Ne + Ng + FENNg - ¢ Nge, = 0(e?) .

In terms of the physical variables w(x,t) this model takes the form

Wt*qx“%*l*lx'é'}xxt:()' (M)

Thus, in sumary, (KdV) and (M) have been proposed as models
for the propagation of water waves under the following conditions.

(1) The waves effectively propagate in one direction. This
precludes the possibility of interactions with reflected waves and,
in particular, it means that any variations in the depth of the channel
should occur on length scales much larger than the horizontal scale
of the waves.

(11) The wave amplitudes are small (i.e. €<<1) and the
horizontal lengtih scale of the waves is large (i.e. d<<1).

(11i) The nonlinear and dispersive effects are comparable:

e8? = 0(1).
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(iv) The waves arise on an irrotational flow.
(v) There is no mechanical degradation of energy.
(vi) The influence of surface tension‘:is negligible (though

this restriction can be relaxed, cf. Korteweg & de Vries 1895).

We can expect significant modifications to a waveform on a
time scale O0(¢*) and, from a formal viewpoint, the model can not
be justified on times which are 0(€™).

2.2 Previous studies

In 1971 Zabusky & Galvin reported some experiments in which a
train of initially sinusoidal waves propagated into still water.
At stations further along the channel they found that, after the
first couple of wave crests had passed, the wave profiles were very
nearly periodic in time. This property suggested a numerical
experiment in which a periodic version of KdV was integrated, using
a sinusoidal waveform as the initial data. Then, to compare the
numerical computations with the experiments, the long-wave speed for
linear disturbances was used to provide a kind of equivalence between
time in the periodic problem and position in the experimental
configuration. The experiments were made at values of S equal to
22, 482 and 777. Fairly good qualitative agreement was obtained
between the predicted wave shapes and thosé observed experimentally,
but quantitative comparisons were not made, principally because
viscous effects had a significant influence on the experimental results.

A study similar in concept to the programme to be described
here was made by Hammack (1973). Water was displaced at one end cf
a channel generating an isolated waveform, the passage of which was

observed at various positions along the channel. Comparisons made
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between the observed profiles and numerical solutions of (M)
showed good qualitative agreement but, since the computations
were not very accurate and since viscous effeots were again
important, detailed quantitative comparisons were not made.

For these experiments the value of S lay between about 1 and 10.

In a subsequent experiment Hammack & Segur (1974) also
followed the evolution of an isolated waveform propagating along
a channel. Using the inverse-scattering methods developed for the
KdV equation they predicted both the number of solitons to emerge
from the initial waveform and also the amplitude of the largest
soliton. The predicted number of emergent solitons was in agreement
with the experimental observations, but the predicted amplitude of
the leading soliton (after making a correction for viscous damping
along the lines suggested by Keulegan 1948) differed by about 15-20%
from the observed values. These experiments were carried out at
values of S ranging between 50 and 600.

In each of the above studies, the theoretical solutions were
obtained from the solution of a pure initial-value problem. However,
the initial data set was not obtained in the form required for the
theoretical model, necessitating a transformation of the data.
Because the transformation employed was inexact this may have led to
significant errors in the solution (see appendix A).

2.3 Allowing for dissipation

One of the main conclusions to be drawn from the previous
experimental studies is that useful quantitative predictions
can be made only by taking account of dissipative effects. On
the scale of the present experiment the main sources of wave

damping appear to derive from viscous dissipation in the boundary
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layers on the sides and bottom of the channel, from the
influence of the meniscus at the side walls of the channel and
perhaps from damping at the free surface (see:Barnard, Mahony

& Pritchard 1977 and Mahony & Pritchard 1980). It is possible
to incorporate the effects of the boundary layers on the walls
of the channel into the theories described above (see Kakutani

& Matsuuchi 1975), but there are both empirical and theoretical
uncertaintities about the representation of the effects at the
free surface and at the meniscus (see Miles 1967, Mei & Liu 1973),
Thus, any attempts to account for dissipation must, to a certain
extent, be guesswork.

The rationale behind the construction of models such as those
described in §2.1 is that the various corrections to the primary
waveform can be calculated independently, with a composite model
formed by including the modifications additively (on the assumption
that the coupling between them is negligible). Because of this
it is sufficient, for the time being, to consider the effects of
damping only on waves of extremely small amplitude, so that a
linear model is applicable. Then the dispersion relation between

the frequency w and the wavenumber k is given by

2

w=k(1-4k?) (kav), w;k(ug—k’)" (M), w=(ktanhk)" (exact). (2.4)

By construction the phase speeds w/k for each of these relations
are different only at the fourth order in k.
The theory of Kakutani & Matsuuchi (1975) indicates that the
effect of dissipation in the boundary layers on the rigid surfaces
of the channel is comparable with the nonlinear and the dispersive
).

corrections from the inviscid theories when the wavenumber k is o(Rr

Here the Reynolds number Rs=(gd§)%/b, where y represents the kinematic
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viscosity of the fluid. Under these conditions Kakutani & Matsuuchi

show that the dispersion relation for (KdV) should be modified to
. ¥
w= k(1-§k*) —Lpfkl*, (2.5)
where p is a complex number depending on R . Thus, not only do
the boundary layers induce a damping of the waves but they also
affect the phase speed slightly. Moreover, the analysis indicates

-1/
) "< kP

that the boundary-layer damping can be neglected only when (kR
So, as a rough guide, we cannot expect to be able to discard
dissipative effects when the water depth is less than a metre. The
kind of damping introduced in (2.5) can, of course, also be

incorporated into model (M). A term of this kind introduces a
pseudo-differential operator in each of the mo‘del equations.

However, as indicated above, the boundary-layer theory considerably
underestimates the damping rate (by about 40% on the scale of the
present experiment, according to Mahony & Pritchard 193%0). Because
of the inadequacy of the theory in this respect we decided to use an
ad hoc representation of the wave damping to preserve the simple
structure of the model equation, rather than attempting a more
complicated representation that could not be totally justified
anyway. Thus, we shall suppose that a wave of wavenumber k is
damped at a rate proportional to K? , having the effect of
introducing a term uv,, ,p€R, into the model equation, and this
can easily be incorporated into the numerical scheme of §3.

For the experiments to be described the waves were generated
by a forced motion at a frequency W, , with the result that most
of the energy should have resided in a single wavenunber k, , say.
Then, by choosing p such that the damping of waves of wavenumber

k, agreed with the experimental decay rate at very small
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amplitudes, we should at least have modelled correctly the
dissipation of the fundamental, even if other wavenumbers
are likely to have been dissipated at an incoyrect rate.
(This statement is of course based on the presumption that the
wave damping depended linearly on m , which might not be
justified in the case of damping derived from the effects of the
menisci).

These very considerations indicate that we need to be
circumspect about the representation of the dissipative effects,
a point we shall consider in more detail in § 5.4. However, for

the present let us take the model equation in the form
3 4
Me ¥ Max t 22 ~ Paxx ~ 6 Txxt =0. {Eﬁ;?)’

2.4 Mathematical considerations

Three kinds of mathematical problems have been studied in
connection with (KdV) or (M).

(i) Pure initial-value problems. For this class of

problem it is supposed that the surface profile is known at some

instant, say t=0. Mathematically this amounts to the specification
n(x,0) = g(x), for xeR. (2.7)

Interest is focussed on the solution of (KdV) or (M), defined for

t > O , which agrees with g at t=0. If g is an element of a
function class comprised of smooth functions that decay to zero
sufficiently rapidly at *oco, then it is known that the specification
(2.7) constitutes a well-posed problem in conjunction with V(M) (eg. see
Benjamin et al. 1972) or in conjunction with (KdV) (eg. see Bona &
Smith 1975).

A physical realization of this formulation of the problem can
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be achieved in a long channel by establishing a wavetrain of
restricted spatial extent that propagates from one end of the
channel to the other. A photograph of the water surface at some
instant could be used to determine the initial datum g and the
wave profile at later times could be compared with, say, numerical
solutions to the model problem. (This, in essence, is the kind
of programme carried out by Hammack & Segur 1974. However, in
their case, the determination of g(x) was made from a temporal
wave record g(ax,,t),x, fixed, together with the leading order
approximation 1.+ v,=0 for the wave field. It is shown in appendix
A that such a procedure can lead to significant errors and should
be avoided.)

(ii) Periodic initial-value problems. These problems are

the same as described in (i) except that the initial datum, g,

is given a periodic function. Again, the mathematical problems

for (KdV) and for (M) are well posed. However, the physical
realization of such a model is very difficult to achieve. (Zabusky

& Galvin 1971 used numerical solutions to a problem of this kind

to explain qualitatively the behaviour of waves generated by the
periodic motion of a wavemaker at one end of the channel, cf. § 2.2.)

(i11) Initial- and boundary-value problems. For this class

of problem we are interested in solutions n(x,t) for x,t >0,

to the model equations, subject to the conditions

n(x,0) = glx) , x>0, and nl(0,t) =h(t), t=0. (2.8)

J

For consistency we suppose that 9(O)==H(O). It has been shown

by Bona & Bryant (1973) that, under these conditions, (M) constitutes
a well-posed problem i1f g,h are suitably smooth functions. However,
a complete theory for (KdV) has not yet appeared.

In physical terms g represents the initial configuration of
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the water surface; usually we would expect at the outset that the
water is undisturbed, in which case we would have g= 0. The
function h(t) represents an imposed amplitude of the water surface
at the left-hand end of the chamnel. Thus, we might think of this
kind of problem as a model for waves with known amplitude initiated
at one end of a long channel.

2.5 Practical considerations. The issues raised in the

preceding discussion impose considerable restrictions on the
experimental design. But, in addition, if the models are to

be of any real practical value they should be applicable to the
kind of situation that usually obtains in the laboratory, namely
the propagation of waves arising from the forcing effects of a
wavemaker at one end of a channel. Since wavemakers are usually
driven in a periodic mofion, it would be nice to preserve this
feature as well. Indeed, such forcing would be desirable here
becausézeimposed frequency effectively establishes a length scale
for the motions, allowing a fairly precise specification of the
parameter S. In order to meet these requirements and to simplify
the experimental procedure, it would appear that the most
suitable kind of mathematical problem to model is the initial-
and boundary-value formulation. (One of the main empirical
difficulties in modelling the pure initial-value formulation is
that of obtaining an instantaneous spatial measurement of the
wave field. But also, in our case, the wave tank available would
not have been long enough for such an experiment.) A convenient
experimental procedure would be to start with the chamnel free of

motion and then to set the wavemaker working at a fixed frequency

and amplitude. This would initiate a train of waves that would
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propagate along the channel, retaining their unidirectional
quality until they reach the end of the channel, at which point
the experiment would have to cease. The boundary condition
h(t) in (2.8) could be specified by a temporal record of the
wave amplitude (taken at a position far enough away from the
wavemaker to avoid confusing the free waves with the parasitic
field localized near the paddle).

The wave tank available in our laboratory was only 5im
long. So, in order to allow enough time for the waves to show
significant modifications before reaching the end of the tank,
the basic wavelength had not to be too large. On the other hand,
it had to be larger than the channel width (30 cm) to avoid
spontaneous generation of transverse modes. A reasonable compromise
for the wavelength appeared to be 36 can. We decided to use a
wavelength-to-depth ratio of 12:1.

In principle we would like the experiment to cover a range
of wave amplitudes for which the parameter S, measuring the
relative importance of nonlinear and dispersive effects, spans
a fairly representative range of parameter space. Under the above
conditions, S would take a value of 0.1 at a wave amplitude of 0.002 cm
and would be 10 at a wave amplitude of 0.2 cm. So, to be sure
of achieving linear motions at one end of the parameter range, it would
be necessary to use very small wave amplitudes. Fortunately, in our

experiments, this did not pose any major difficulties.
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3. PROPERTIES OF THE EXACT SOLUTION OF THE MODEL EQUATION

In this section we study properties of the solution of the
"initial- and boundary-value problem

Met @M *BNMx ~ Pax™ FMxxt = 0
for x,;t 20, (3.1)

r[(:x:,O) =0, YI(O,t) = h(t),
where «, 8, pt are non-negative constants and ¥ 1is a positive
constant. We shall first discuss the questions of existence,
uniqueness and a priori boundedness of n. Then, in preparation

for a posteriori error estimates to be derived in §S, bounds for

derivatives of r are given in terms of assumed bounds on -
Finally, it is shown that 7] decays exponentially in space, justifying
the truncation of the spatial domain in numerical calculations.

3.1. Existence, uniqueness and a priori bounds for n

Suppose that the boundary data is 'smooth' in the sense that,

for a given T > O and an integer €3 1,
he €%(10,73) ad  h(0)=0. (3.2)

Then, using the techniques of Bona & Bryant (1972), it follows that
(3.1) has a unique solution nee, that 1is, (8x> 3¢/ Ni%

exists and is continuous on [0,00[ X [O,T] , fori =0,1,..., ¢

and j = 0,1,...,k. (Here k may be any positive integer). Furthermore,
these derivatives of r,' all tend to zero as x-oo, and 7, T are square
integrable in x on [0,0]. If |h(t)] and Ih'(t)l are bounded by some
constant, say M, for te[0,T], then using the methods of Bona & Bryant
(1972) it can be shown, for t€[0,T],that

byt
mox {Intx,t)] : x>0, teloT]} € be™, (3.3)
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where bl , b2 are constants depending only on oc,IB, p, ¥ and M.
In addition it follows that the solution to (3.1) satisfies the

¥

equation (cf. Bona & Bryant 1972)

qt(x,t) = h'(t) e-’c/'/r + j:i(x,g)(aq+ %pq’)(g,t) dv:j e

+ %[h(t}e‘zm- nix,t)] - /.xfo Hlxy nly,t)dy

where

- (r.qu)/v'

Klx,y) (= Kplxy) + Klx,y)) = zir C -yl Y ]

+sgn (x-y)e
(3.5)

and g(x,ﬁ) (= Halx,y) +Hixy)) = [e-(x*s)/lé' _ e—lx-slllf] .

3
2

The numerical scheme to be described in §4 is based on this formulation.
From the definitions it follows, for any non-negative integer k,

that
max{fo laag K(x,g]d{j j lag xgldﬂ : x>0} <¥

W{J:I(%)k ﬁ(x,g)’dﬂ,gl(%)k ﬂ(m’ﬁ)ld‘j x> O} - x—(k+2)/2.

Remarks. (i) The a priori bound (3.3) can be improved considerably.

-(k+l)/2
(3.6)

For example, in some separate work we have been able to show that
max{ml} grows no faster than t. However, (3.3) is sufficient to

obtain a posteriori estimates (see §5) which show that there is

essentially no growth in the maximur of [n| , provided the same holds
true for a discrete approximation to n.

(ii) The above theory holds when(3.1) is posed with non-zero
initial data 1 (x,0) = g(x), provided that ge 6°([0,]) for k > 2,
that g and its derivatives tend to zero as x+w , that g, g’ are square

integrable and that g(0) = h(0).
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3.2. Bounds for the derivatives of n

Bounds an the temporal and spatial derivatives of 7 are to
be derived in terms of assumed bounds on the maximum of 'Yﬂ
itself. Thus for T > O, define
a(T) = m{lq(:n,t)l: xao,te[o,T]] . (3.7)

We shall use the notation
Ioll = max {|¢(x): x> O} , (3.8)

where ¢ represents 7 or its derivatives.

Bounds for 1, can be obtained directly from (3.4) through
an application of Hblder's inequality (together with (3.6)). These
imply that

In(-o 8] < Wae) + 77 [ea(t) + £ po* )] + 3(ui) olt), (3.9)
where h') is defined by
h(;) (t) = max {Ih(")(s)l : O<s< t} , (3.0

with t > O and k a non-negative integer. (Note that |h(t)| < o (t).)
Bounds for the spatial derivatives may also be deduced from

(3.4). On differentiating (3.4) with respect to x we have that

Nat(x,t) = iRy J:Kg‘(x,g). (an+1pn¥(y,t) dy

. (3.11)
- 't"(«q-tipr,’)(x,t)-pfi hit)e™ M - L,;q,‘ (x,t) - ’AJ; Hay)nigtidy .
Multiplying this equation by %.(x,t) and using Holder's inequality
together with (3.6) it follows that
$ 202 (t) + (WY nilxt) € Mt (3.12)

where M= y i h(:: (t) + 25" (xolt) + 1po’it)) + 2p7'io-(t).
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Gronwall's lemma implies é;at | |
e ()] € (Ma/p) (1- €)= (W), 00t), ¢ )

Thus, since x > O was arbitrary,
Ina (-5 t)] € R(RP(t), alt), t) . _ (3.13)

Note that P, (h:’(t) , o(t) , t)=< M. nin{t, ‘8’/H} , SO that P, is

bounded by a polynomial linear in t and h':: (t) and quadratic in

o (t), having coefficients that are polynomials in o, B and ¥t .

Moreover, the (explicit) dependence on t can be ignored for t > ‘x/ M-
Bounds for higher-order spatial derivatives can be obtained

inductively by similar kinds of arguments, leading to the f’é?lowing

lemma.

Lemma 3.1. Let T > O. Suppose that he€'([0,T]) and that h(0) = O.

Let v be the solution to (3.1) and let h, and o be defined by (3.10)

and(3.7) respectively. Then, for any positive integer k and for

te[0,7],

MR (>t < P (n(), o(t), t),

where Pk can _be bounded by a polynomial of degree k in h(,:(t) and

min{ t, ¥/p} , and of degree k+1 in ¢(t), having coefficients that

are polynomials in «, B, p and o |

Comment. A polynomial P(x,,...,Xx,) is said to have degree lj in
the variable x; if P is a polynomial of degree at most £; in the

variable X, when all the other variables are held fixed.
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3.3. Decay rates for the exact solution

Lemma 3.2. Let T> O and suppose that he €' ([0, T]), with

h(0) = 0. Let n be the solution to (3.1) and let h::”

» by and

o be defined by (3.10),(3.10) and (3.7) respectively. Then,

for any real number re]o,r'i[ there is a function C = C(0(t))< o0

such that
Il € [(p/1)halt) + hy(t)] Cexplct-rx)

for te[0,T] . Here C(2) = (a/¥)[(«+ $pE) + p(1+ ¥ri)f2x*] |
where a = 2 7*,/(1-7#).

Remarks. (i) This estimate says, in effect, thet solutions to (3.1)
represent waves which propagate with speed not exceeding C/r. When
M =0, the speed C/r is minimized when r = (32{).i , So that
C/r € 3/3 (a+ipo).

(ii) With p= 0, 'solitary wave' solutions to (3.1)
of amplitude 0 decay in space at a rate r = [ ¥ (1+ Boc/po)]% and
propagate with speed a+§pa.

(iii) Similar results also apply when (3.1) is posed
with non-zero initial data 1) (x,0) = g(x), provided g(0) = h(0) , g’
is square integrable and |g(x)] € Me" for x > O. The estimate

is then modified by the addition of the term M exp(Ct-rx).

Proof. Let X > 0 and define a weighting function w such that

wix)z e ™ , O=sx=<X
et x> X
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Set v(xt)= w(x).rl(x t) and multiply (3.4) by w. It follows that

U (x,t) = ht)e ~x Y w(x) +‘£ K(x.«d) oc+.ilgq(3,t))v(3,t) dy
(3.14)
( )[h(t e M wix) - v, t)] - ,.Af H(x,g) wm v(g, thdy .

zﬂ.fw(x) < 1 for any x > O.

When r is in the interval ]0,7¥3[ , e
Therefore, after multiplying (3.14) by 4(x,t) and applying the Holder
inequality, we have that
12 vimt) + & viat) < {IN)]+ Bln]+ @ dpole) vt IlflV(:t,g)l%%
(3.15)
ity {x)
+ vl N IH(x,«J)I:{(—:)dg} lulxt)] .
(Note that |jv(-,t)) < olt)e" <o for te[0,T].)
From the definitions (3.5) it follows that

g e-'x-ng s b L

| R (x,9)l < and 1H (e,y)| <

Moreover, w(x)/w(y) < exp [ (x-y)r] when y < x,and w(x)/w(y) < 1 when

y > x, so that

o

] -yl weldg < (vi-r) + vt =a, . (3.16)
Using these inequalities in (3.15) we see that

iza—"’;u’(nc,t) + % vi(x,t) < {lh'(t)i + % [hit)]

rog[(ar ipott)/r + £, ] v, ] vt
< {0 + hOW 4 EW I, 1] vl

where € (t) = ao((ou%pa(t))/'( + p/fi].

Write S(t) = max{uv(-,s)" : O0<s < t_}. Then Gronwall's
lemma implies, for any t <t < T, that

vl € {Eh )+ R0 + s JE) (- )

+ vz, t,)] g Pttt
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But since x is an arbitrary point, it follows that

s(t) < {(&) i (0 + 1) ¢ B s - M

+ S(t,) e‘P(t‘to)/Y )

Thus,
0e SW-St) {ERGT0 + () + E(t)S(t)—(%)S(to\}x

t-t, 7
1- exp[-H(t-to)/‘(]}
{ plt-t)/¥

and, on letting t, - t, we have
sty BRY @)+ hitt) + [t) - B]swe) .

A further application of Gronwall's inequality gives

exp[E(t) - (p/a)t] - 1
Tlt) - (ul¥) ?

stt) « [ERrT0 + ny'(t)]

so that

Mt € [ &R v o] expl Et)- (W)t] -1 1

glt) - (MY) Tw(x) "
So far we have held X fixed, but if we now let X+ the conclusion

of the lemna follows except that a is replaced by a, in the function
€(t). But, having deduced that 1 (x,t) decreases exponentially in x
we can repeat the above argument with w(x) = exp(rx) for all x > O.
We now know that {[v(+,t)ll = |w (-,t)]| <o and the argument using
Gronwall's inequality is therefore valid. The improvement in the

constant a comes because

® _|x- [ 4 - - =1 _ -1
j g YN er(xﬂ’dfj s ()t (14 r) = a .

o

Using this estimate instead of (3.16) leads to the stated result.
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4. TIE NUMRICAL SQIEML

4.1 Spatial Discretization

The numerical scheme is based on the integral equation (3.4).
The equation is first discretized in space, its right-hand side
is evaluated and the resultant system of ordinary differential
equations is integrated forward in time.

The spatial discretization is affected by approximating the
integrals of (3.4) by the trapezoidal rule with derivative correction
at the end points of the domain (see Davies & Rabinowitz 1967). Thus,
truncating the half line [O,oo[ and introducing a wniform partition
of N+1 points, {O, Ax , 20x,... ,NA:x:}, we have, for any sufficiently

smooth function V(x), the approximation

kAx
Jij Vigldy = Ijulv) = 3Ax (V(jAx+) + V(kAx-))
et (4.1)
+lLox Y V(iAx) + SAx? (V'(jAx+) - V'(jhx-)),
t=§+t

where j,k are natural numbers with O<j< k=N. This approximation has
fourth-order accuracy, provided V has four bounded continuous
derivatives on the open 1interval ]ij, kAx[ (see §5.1 below).

In using (4.1) to approximate (3.5) we note that the function
V(y) is of the form J(x,y).v(y), where v(y) 1is assumed to have four
bounded, continuous derivatives on ]O,N Ax[ and J(x,y) (which is used
to symbolize either Il or K) has four bounded, continuous derivatives,
as functions of y, on each of ]0O,x[ and 1x,N Ax[ . Thus, the
approximation (4.1) is to be applied separately on each of these
intervals and the sum 1s to be taken. When N is large enough it
can be shown (see §5.1) that the contribution from the right-hand
end point, NAx, is negligibly small, so that terms arising there

can be omitted from the numerical scheme. Therefore, if we denote
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J(iAx,y) by JT;ly), 0<i <N, it follows that

NAx -
jo Jily)vly) dy = bx [T (0)v) + (T (iBx-) + Ty (ibax+)) v(idx))
N
+Ax ) J,-v(ij)v(ij)
Fhiec (4.2)

s 82 [(Teg) vl ], - (Tuwvl9)) [, + Tug) vig))|

(= Ton[Te(y) v(y)) - § Ax T Nax) v(NAx) + 5 ax? (Tutg)viy)| ),

1dx+

If we further define vj'iv(j,x) and J}d =J(1Ax, jAy) and we
introduce the particular forms for fi and K we can (after some

simplification) rewrite (4.2) in the form

-i. x ' 8 jsaxfl 1
jo"“‘ oy vigdy = e [3(ax/r%) L &My - 4 (aay) v,]

v A T Hyvp o+ & (BxfY) vy (4.3)

NAX -~ iAxH N ax
jo * Kily) v(y) dy ~ ,’—,_(A:zc/‘h’)etA /r[«;o +3:Z1 &t /wud- +thx v'(04))
(4.4)

N
+ Dx Y Kyvuy - 3 (Ax*/Y) v'(idx) ,

with K.. = 0.

117

The contintious quantities v'(0+) and v'(iAx) in (4.4) are still
to be discretized. Since both these terms derive from the second-
order correction terms to the trapezoidal ruleit is sufficient to
approximate them only to second order to retain the overall fourth-

order approximation of the integral. Thus, we write
v'(04) = (-v, +4v, - 3v,)/28x , v'(ibz) = (v, -vi,)/ 20,

and, incorporating these approxirations in (4.4), we have

T - N J _
P Rty vty = 10/ L E S 18 Loyt

3:0

¥ sz Ky Ui = a (Bx/¥) (Vi = ving). (4.5)
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Using (4.3) and(4.5) we construct an approximation to (3.5) of the

form

Ne = Elt,an+ipn?) - pGly), (4.6)

where F, G are vector functions with, for example, the notation

-~

F= (F1 seoay FN) . It is convenient for computational purposes to

write each of F and G as the sum of two vectors, i.e.

F(t,v) = Flit,v) + Flv)

~ ~ H

Glv) = G'(v) + G*ly)

where

1

i 5 it
P gl {h'(t) . %(Ax/”[j};oe"“”vj +,12-(-u1+4u,—3u,)]}

for 1=1,2,... , (4.7)

3

= (Vi - Vi) s for i=1,2,... N-

Yoy , for i=N

N A
SAx MY . , _§Ax Y
Gy = e ol {—[1‘4 s8] v, + 5 (D) Z1e’ vjl
J:
3 : E (4.8)
+A:ch}=:1 Hijvgi , for i=1,2,... .
G: = [v' é(Aac/‘()z} v; , for i=1,2,...,N, )

Here v = (v4,...,V ). Note that Fl, Gl are defined Vi2l, even though

they involve only v, ,...,v,-

4.2 An efficient corputational procedure

Before discussing the discretization in time it is worthwhile
to consider efficient ways of computing F' and G T Evaluating

f' and 'G_‘l directly would require O(Nz) operations, although this
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can easily be reduced to O(NlogN) operations, through the use

of a fast convolution method. liowever, it is possible to view (4.6)
as a difference approximation to (3.5) and requce the computation
of }j' and G' to O(N) operations. To do this, we introduce a

7’

difference operator D? defined by

eA"/’ v 2

+ eAx/lf) ,

(Dz‘.ﬁ."),-, = w, = (W, -2w + “’m)/(

= Aw; + B(“’iﬂ + “’i—v):

so that A = 1 + ZB.

The operator D® is effectively an infinite-order approximation
to (1-% 6; ), in the sense that when D? is applied to the integral
kemel for the inverse of (1-%¥0d;) , the Kronecker & - function

. ‘ tA
results, exactly. (To see this, let w; = e’ Y

,1¢ Z . Then
ngao.) Thus, applying D* to f‘ and 91 {and after some simplification)

it follows, for Z2<1i<N-1, that

[P E'Ct 0], = §(BA=/Y) (v, - Vi)

(4.9)
and [o’ G'(v)] L= %(BA::/Y%) ed=/l¥ v,
In order to complete the system of equations we must calculate the
values of (D°F');, (ng‘)i for i =1 and i = N. These yield, for
i=1,
AF! + BF = -Bh'(t) + 4 (BAx/¥)(13v, - 4v, - 9v,)
(4.10)

and  AG! + BG,

('+ & (Ax/1)?) By, + (BAx/1%) sinh (Ax¥)v,, |
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BF:H + AF = -3 (BAx/Y¥) vy, + (-BFr) s
. (4.11)
Ax/NY
and BG., +AG, = 3(Bax/¥%) ™y +(-Bal, ).

3
We propose that E’ s g‘ be evaluted by solving the tridiagonal
system of equations (4.9 - 4.11), which requires only O(N) operations.

To solve these equations we rust first evaluate the temms F»:u and

thn that appear in (4.11), the calculations for which can be made

explicitly using the formulae (4.7) , (4.8). (Note that such a
computation involves only O(N) operations.) However, it can be shown

. D 4 .
(see §5.1) that the retention of the quantities Fivi o G:M is of

only exponentially small consequence and it is more convenient simply

to discard them from the system (4.9 - 4.11). Let us denote the solution

of the resulting set of equations (i.e. the ones neglecting F’:H s G!

N+
by f’ , '('3:.
4.3. Temporal discretization
Let us denote the semi-discrete approximation to 7 by the vector
function y(t) = (uy(t), u,(t),...,u,(t)),where u is defined by
wylt)= hit) , t20,
(4.12)
and Qg (t) = Fi[t,(ocgs*%pg,’)(t)] - pGi[g(t)] , L= 1, N,
and F=F' +F*, G=C" +G" Here u” denotes the vector (u, u?,...,ul).

Then if h is identified with u, wherever it appears in the definition of

fand

L {opl}

, the set of equations (4.12) may be written as a system of

ordinary-differential equations

& = J(t,u), (4.13)
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for the véctor, U= Uy, Upyere »u,). This set of equations can be shown
(sec §5.3) to have a solution on an interval [0,T,], where T, tends to
infinity as both Ax = 0 and X,=NAx > .

The temporal discretization of (4.13) hasJ been effected through a
prediction-correction method which, in the present case, is efficient
because the initial datum is zero and no start-up procedure is needed.
Thie continuous quantity h/ (t) appearing in the definition of:}i (cf.(4.7)

is calculated by the fourth-order central-difference formula
- - 1 “
h(nAt) = dh™ = (h" 2 gk s g™ -k ‘2)/(12At) , (4.14)

where h* = h(n At), neN . Let 3" (v) denote the function obtained
by substituting dh™ for h'(nAt) in F at that point. Then we take the
fully discrete approximation to 7 to be the vector function given by
Moulton's method (cf. Isaacson & Keller 1966), namely

aﬁ'” - u‘n+ 2% At[SS]“(U.“) _ 59\7ﬂ-1(u11-1) + 373"-2(‘““-2) _ 93’\'3(“’!'3)]7

(4.15)

and

o= un ‘ 512 At[ 97 n*1(11n+1> 4 19371(“?1) _ Sgn-'(un-f) + 3"‘7-(“"-2)‘] .

. e e . -1
Since the initial datum is presumed to be zero, we shall take u°, u ,

(and 1%, 1"

,-.-) to be zero as the starting values for (4.15).

It should be noted that there are no stability limitations on the size

of At in (4.15) because A x does not appear in the denominator of J.
The error induced by using the above scheme to approximate the

solution of (3.1) is O( Ax?+ At*) and the same methods can be

employed to develop schemes of arbitrary order of accuracy by using

higher-order derivative corrections for the trapezoidal rule and higher-

order prediction-correction methods. But before deducing the accuracy

of the approximation we shall first describe some numerical tests made

with the scheme.
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4.4. Convergence Tests

The theoretical convergence rate of the scheme was checked by
comparing numerical solutions for the propagation of a solitary wave
with the 'exact' solution for the continuous equation. With p =0
and for x€R, there is a family of exact solu’tions to (3.1la) of the

form

N = "o Secm{(ﬁﬁ%ﬂ;‘))k[x+x°—(m+%ﬁm)t]} ) (4.16)

where >0 is the (maximum) amplitude of the wave and x, is a real
constant. The wave propagates without change of form at a steady
speed (a:+§pmg. The constant X, is a parameter used to 'offset'
the solitary wave so that, at t = O, the wave crest is located at
==X alternatively, the wave crest passes an observer stationed
at x = 0 at time t = Xo/(a-}%/ﬂ‘rb). Therefore, if at x = O we were
to use (4.16) as the boundary data h(t), we would have, in effect,
an exact solution to (3.1). Of course this solution, as a function
of t, is exact only on the whole real line but, because of the
exponential decay in the 'tails' of (4.16), n can be made arbitrarily
small at t = O (by choosing X4 sufficiently large) so that for
te [0,0] the function (4.16) can provide a close approximation to
an exact solution of (3.1). It should however be noted that such
a truncation introduces an incompatibility at (0,0) between 11(O,t)
and 7(x,0) and this may slightly pollute the numerical solutions.
Nevertheless, we have taken (4.16) as an 'exact' solution and
have carried out a convergence test for the schene, the results of
which are given in table 4.1. Let ui(T) be the computed solution
at time T and at x = 1Ax, 0€ 1< N. Then the entries shown in
table 4.1 are E, (1) = max {|u,(T) ~ q(iAx,T)|:0<i<N]. The

computations reported in table 4.1(a) were made with 17, = 0.25,

-
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(which was roughly the largest wave amplitude encountered in the

8 at 0,0),

experiments) with x chosen so that nfn,= 0.1 x 10
and with At = Ax (=A) . The choice of At =,Ax was made because
prcliminary tests suggested this was near the optimal choice, in

terms of accuracy achieved for a given amount of work, and because

it is sufficient to take At/Ax = constant to check the convergence
rate, if the error is proportional to (At4 + Ax4). The domain
used for these computations was approximately the same as that
needed to make comparisons with the laboratory experiments.

It is seen in table 4.1(a) that, apart from the smallest
time quoted, the errors decreased at approximately the 16:1 ratio
expected of the scheme. At t = 19.2 the wave crest had not yet
emerged from the 'wavemaker', so that the wave amplitudes were
quite small (cf. the value of [nl, quoted in the table) and the
influence of the truncation of the input waveform is reflected by
convergence rates being rather smaller than expected for the scheme.
With n(0,0)/n, chosen to be 0.1 x 10™° the errors E,, (see table 4.1(b))
were of a similar form to those given in table 4.1(a). Indeed, it
would appear that the differences derived from the different values
of X5 used in the two experiments: for the latter experiment the
'sglitary' wave was centred approximately at x = 45.70 at t = 67.20,
whereas for the former it was centred approximately at x = 48.52.
However, when the error EM was detemmined with the wave crest at
45.70, the errors for each experiment were nearly the same (for the
cases A= 0.15, 0.075).

A similar test of the convergence of the numerical scheme was
made by comparing solutions with n(X,t) for X fixed. If u’ (X) is

the computed solution at position X and at time t = j At, 0<j< M,
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A E£,(x) E, (X)

0.6 0.286 0.178 0.165
ratio 15.6 13.8

0.3 0.183(-1) | 0.131(-1) | 0.120(-1)
ratio 16.6 15.5

0.15 0.110(-2) | 0.870(-3) | 0.774(-3)
ratio 16.9 16.0

0.075 0.651(-4) | 0.551(-4) | 0.485(-4)

i 1.09 0.426 0.250

The errors E,, E,, E,

(4.16) with N = 0.25, X = 36.0. ‘M At = 180.0.

« =1, p =15, p=0, Y-z,

induced in integrating a solitary wave

A =At = Ax H
7 (0,0) = 0.1x 108, =, = 27.079,

A E,(15.0) E, (15.0) E.(15.0) £,(30.0) £.(30.0) | E,1(30.0)
0.6 0.10§ 0.707(-1) | 0.651(-1) 0.176 0.133 0.118
ratio 16.0 14.4 14.9 14.3 13.6 13.6
0.3 0.655(-2) | 0.492(~2) | 0.438(-2) 0.123(-1) | 0.975(-2) | 0.866(-2)
ratio 16.4 15.2 15.6 15.9 15.3 15.7
0.15 0.400(-3) | 0.323(-3) | 0.280(~3) 0.772(-3) | 0.639(-3) | 0.553(-3)
ratio 17.1 16.6 16.8 17.1 16.8 16.9
0.075 0.234(-4) 0.195(~4) | 0.167(-4) 0.451(-4) | 0.380(~4) | 0.327(~4)
inl 1.10 0.417 0.239 1.11 0.409 0.231

TABLE 4.3 A convergence table for the numerical scheme with p#O. Mit= 75,0
A=At=4x; =1, =15, pu=0.014, T =7.




then we have calculated

M R M .
(X1 =2 1uf () -, jatl At ExlX)= {Jz_ia[u’(x)-q(x,jm]zm}
2 -

¥

and £, (X) = max { |43 () = n(x,jat)[: 0= 5 M].

The results of such a calculation for o= 0.25 and X= 36.0 are
given in table 4.2, and again a convergence rate of about 4 was
obtained.
With p.# 0, we do not know of an exact solution to the
continuous equation, so the convergence rate of the scheme has
had to be checked in a different way. To ascertain that the
coding of the dissipative term was correct, experiments were rTun
with the linear model (i.e.g = 0) with h(t) chosen to be sinuscidal
in time and the decay rate of these waves was compared with that
deduced from the dispersion relation. (The results of a test of this
kind are described below in §7.5)
Having checked that the dissipative term had been correctly
coded, the convergence rate for the full equation (with g = 1.5)
was estimated by taking the 'exact' solution to be the results from
a computation made with a small value of A (i.e. A= 0.0375) and
comparing this solution with numerical solutions at larger values of
A . Thus, using (4.16) at x = O for the boundary data h(t), with
\q((),O)/fl0 chosen to be 0.1 x 10“8 (i.e. x,=27.079), and with
p = 0.014 (the value used in the comparisons of §7.3) the convergence

rates, as shown in table 4.3, were again found to be about 4.
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S. ERROR ESTIMATES FOR THE DISCRETE SCHEME

In this chapter we shall let c; , i = 1,2,..., denote real
constants. Also, we shall assume that At, Ax < 1 so that the
dependence of constants on positive powers of At and Ax can
be ignored. The notation is the same as that used in {§ 3,4.

5.1. Spatial discretization errors

The error associated with the trapezoidal rule with derivative

end correction, as given in (4.1}, is:

Lema 5.1. If V has four bounded, continuous derivations on the

open interval ]jAx, kAx[,then

kdx 4 rkbdx
Vig du - I, (v)]| ¢ &= V& gyl dy .
\LM (@) dg ~ Ly (V)] f,-u' )| dy

384

This is a standard result (see, for example, Davis & Rabinowitz 1967).
The error arising from the use of the vector F' can be estimated

as the sum of a term proportional to Ax* and a tem arising from our

approximation at the right-hand extremity of the interval.

Lemma 5.2. Suppose that v has four continuous derivatives on the

interval [0,NAx] . Let y= (v,...,4,), where vy = v(i Ax).

Then, for i =1,2,...,N,

. Nox _ '
|Falt,y) - W1 e - [T RGbx,y) viy)dy |

0

< c, Ax‘mx{]u“’(x)\: xe[oNAx], j=0,...,4] + c,bx max{lv, , |:k=0,1,2],

where the constants c,, c, depend only on ¥ .
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Proof. By definition (see (4.1), (4.2), (4.7))it follows, for

i=1,...,N-1, that

~ibx /Y + Io,(,(z(iAx’.) U) + I;’N(E(i—AIa')U)

Fult,u)=h(t)e

Ax? -ibxfNYp (-1, +4v,-3V0) é_:; ’s _(V{u"ViA)]
-2t T o) - R ] 4 22 [ it - R

+ 3 Az R(ibx, Nbz) v, + 3 Ax? (Rlibx, ) v)|

Pj—-

NAX

The difference approximations in the fourth and fifth terms are
less than
{ Ax?max {Iv"’" (x)] = xe[0,NAX] } .

The last term can be estimated as follows:

|(R(£Ax,-)v)'| = | K’(ibx,NAx) v + K(idx,Nax)v'(NAx)]|

NA:::.|
< A vl + U (NBx) - (v, - 4vy, + 30,) /28]

+{(47'28x) |v,, - dv,, +3uy|
< (Ax*/3%) max{|v®(x)|: xe[o,Nax]]
+ (% + 2/(40x)) max { v, |+ k= 01,2} .

Combining these estimates, together with a direct estimate for the

second last term, we have that

| Flt,g) - WD & = 1, (R, ) v) - Iy (Rlidz,) v)|
’ (5.1)

p %A«mx{'”(a)(x)l: ace[O,NAx]} +Ax (%, + %}m{lv k] tk= 0,1,2} .

But lemma 5.1 implies that

~ ~ NAx ~
E= |, [Rlibe, ) v) + T, (Rlidx,-) v) -fo R(ibx,y) viy)dy |

ap pdbx 4) Nbx (4) ‘
< ﬁ_;:. [jo |(K(1Ax,-)v)‘ (y)|dy +fmx [(K(ibx,:)v) (&j)ldﬂ] )
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which can be estimated further through the use of Leibnitz's rule
(together with (3.6)) and the Hilder inequality.
Thus, it follows that '

E < ¢ dx’ max {|vt¥(x)|: xe[ONBx], j=0,...,4] ,
where ¢; depends only on ¥ . Then combining this estimate and (5.1)

we have the required result for the case i # N. For the case i = N,
Folt,u) = h'tt) e Low(R(NAX, <)) + 3Ax RINAx,NOx-) U,

_ubx/Jr[U(o) (__‘é:ﬂ’ﬁ‘_’ﬂ] + & Ax? (R(NAx,- )v)l zl::{u
x-

m'
The techniques used when i #¥ N apply in the same way in this case.
(The constants here can be chosen to be the same as for the case i # N.)

A similar result can be established in relation to the vector G.

Lemma 5.3. Suppose that + has four continuous derivatives on the

interval [0,NAx]. Llet u=(v,,...,v), where v; = v(iAx). Then,

fori=1,...,N,
NAx ~
|Gily) - ¥lu, + 1 e My, -fo Alidx,y)u(y)dy |
< CAAx‘mx{lu“’(x)lz xe[ONAX], §= O,...,4} +cshx m{lv,,_d tk= 0.',2} >

where the constants ¢, , ¢; depend only on ¥ .

The proof of this lemma follows a similar pattemn to that for

lemma 5.2 and is therefore omitted.

The above lemmas can now be combined to give the following

estimate.
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Corollary 5.1. Suppose that v has four continuous derivatives

on the interval [O,NAx]. Let v = (v,,...,y), vhere v; = v (idx).

Then, for i = 1,2,...,N,
Nx
| Foltay) - w5 - Rlibx,g)vlydy |

. Mx ~
ety - [ b,y vy dy |
0

+ '69(1{) - 7—'1}& + ¥
< ¢ Ax® max { |v¥(x)|: xe[0NAX], §=0,...,4]

+ C;Ax m{luu-kl : k=0,1,2}

- (N+1) Ax Ny ) N
+e TN LR ¢ Az ;oe’“/”|v5|] ,
d‘

where ¢ = C,+¢, , ¢ = C,+Cs and ¢y is another constant depending

only on ¥ .

Proof. Define s, = sinh(iAx/iv)/ sinh[(N+1)Ax/iY] . (5.2)
Recall from §4.2 that ' and G' respectively differ from F' and G'
only because the terms involving F; + and G:M were not retained.

Thus, it follows from the definitions (4.10), (4.11) that

'f,-,(t,v) = F(t, ) - s F;"(t,g) >

Gilw) = Gly) - G (y), (5.3)

N¢l ™
for i = 1,2,...,N. From the definition (4.7) of F' we see that

~(N+)Ax/Y
€

N .
[Fy ()] < { Wl + 3 (s o] s_goe‘“"“/” AT ICAREINN +‘§'m]}

N i N J
+ Ax z e(d N-1)Ax/V¥ h{,’l ,

=1

(73

—

N »
(BT {lh'(t)l + ¢ Ax 2 ejhprl'”i‘ }

3=0 ’
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where ¢’ = {+2Z(Ax/t}. Similarly, it follows from (4.8) that

- (un)A:c/J'{ % esAx/J{

lGNH‘ < ¢ Ax 'Ujl ?

i=0
where ¢” depends only on ¥ « Therefore, on defining c, = c'+ c",

we have that
- ~ + / N
IF e, ) - F (bw)] + | Eole) - Gol)] « e 02=H {lh (t) + ¢, Ax zoe"”‘”"m\},
32

and the result follows from lemmas 5.2 and 5.3.

5.2. Lipschitz estimate for J

In this section ||v| will be used to denote the {, nom of
v ; i.e. if ¥= (v,...,y), then ju| = max{!vilz 1= 1,...,N}.
The map y + F'(t,u) is an affine map, taking the form
}j'(t,y) =L(t) + My, say. The Ly operator nom of M (it is the

maximm, absolute row sum of M) can be estimated as

”M" < max [e.anc/J‘r(Ax)(z 382 §) ' Ax z -h-Jle/u] ’

1< LNy =0 27 §a

< §(Ax)3‘° L f(éx‘x)

N .
Since Ax 31::1 e_"um

<J¥ , it follows that [IMll< 3/2v + 2/Y = ;¢4
Therefore | £'(t,¥) - £'(t,wll = IM(u-w)ll € L, Hu-wl.

(Note that, here and below, the norm on y-W is a norm on (N+1) —vectors
whereas the remaining norms are taken on N-vectors.) Similarly, we
have that

y) - F(tw)l sic ly-wi

, F:lﬂ (t’
and a Lipschitz estimate on F' can be obtained thus:
HE () - £l < NE' ) - Ellta)l + | B iti)- ) - (EM(tw) - K,

5“£1(t,“.{)"£ (t:‘.&’-\'h + ‘Fym t:".{) m\(va“") )

< C,, ".."
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The map ywFlly)is linear and its £, operator norm is bounded by

~

Ax[12¥ (see (4.7)), so that an estimate for E E' +jj2 is
wi

£

E(t,y) -Flt,w)) < e fu- (5.4)
where ¢ =c, + £ ¥.
A similar argument can be applied to the map v v (:}:(y) leading to
an estimate of the form

1Gy) - El)ll < coly-wll, (5.5)

where <G depends only on ¥,

A combination of these two estimates can be used to obtain
a Lipschitz estimate on J (see defined in (4.12) and (4.13)).
Let ﬁ denote the vector (vl,...,vN), let v denote (h(t),vl,...,vN)
and let y* denote (v},..., v;) . Then, since F(t,y) is affine

in v,

I3 (t, y.) @) < JF (¢, cy+ipy?) - Fhaw+ipuwd] + pllGly) - Glwll

/A

cfEtyy) - Ettw)] + 4811 E (tw) - E (el + pll gl -Gl

< celaliy-wi+ 31y -wl) +caply-wi,

/A

Lol + tplaenl) + cop ] lu-wl.
Thus it follows that

13(t,0) - F(t, & < e, (1+ UQedl) WE-214, (5.6)

where ¢ depends only one,8,Y and p. So we see that J is uniformly

Lipschitz continuous in y on bounded subsets of 4, .

5.3. Existence and bounds for the semi-discrete approximation

Let 1(t) represent the vector furition m(t) = r)(iA:x;,t), 1=1,..4N,
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where 7 is the solution to (3.1). Then, from corollary (5.1) and

lemmas (3.1), (3.2) it follows that

nﬁ(t)—é‘(t,n)ﬂ < cﬂAxAP(hm(t),U(t), t) + e-(mt)Ax/Jx hs)

M

' -rNA - AxNY N . -yl
s B0 CAI ('—;,-o’(th h‘M)(t))[eCt T, e(NH) # > GMACt mh}

§= ’

where P(€,o,t) = maJ({(H P.(¢,0,7)) %(E,O’,t): 0< i<js4} , C=Clolt)), ¢y ad

2

c,; depend only on«,8,%¥ and p; and O<r< ¥ (cf. lemma 3.2).

This expression can be simplified by the use of the inequality

N -
Ax e—(Nﬂ)AI/&"jgo eij/’lf 4+ Ct-rjAx < (7_% } r) 1 eCt—r(NH)Ax ’
so that
' () Ax Y
1360 - 3 (6, )] < ca b PRSI, olent) + (e ™I
Ct-rNA
v [ felts e T, (5.7)

= e, (t) [= et(hs,(t)) U(t))t:Ax? NAx)] ’

and c,, depends only on «,8,%, u and r. Note that, by definition,
e, 1s an increasing fmctim of t.

Under the assumption that he 4", it follows from §5.2
that J is locally Lipschitz continuous. Thus there is a unique
solution u(t) to (4.12) for te [0, to] for some t, > 0 . Suppose
that T, is given by

To= swp{toz 0: yu(t) exists andult) - n(t)l < 1 for te[0,t,) } . (5.8)

Since u(0) = 7 (0) = 9, and both u and n are continuous, then T,> 0.
We shall now obtain a lower bound for T, and show that T,-»

as Ax+ 0 and NAx—+w . For te[O, T,) it follows from (5.6) and
(5.7) that
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latd -t (= 1 (L, wv) - Fl) = 3¢, ) - Flt, nieh) + | (g, nt)-7B)),
< ¢ (1+ Nult)+ g)d) lu(t) -nlt)f + e (t),
< 2¢ (1 +alt) ult)- )| + elt), (5.9)

Since %[W{I‘*i“ml}] < max { 'o%(“i"'li)” , except possibly on
a set of zero measure , it follows from (a weak form of) Gronwall's
lezma that

lwlt) - (ol < e (0 [T L 4] /[2¢ (1+0w)],
(5.10)

= “}'(t_) R
for tel0,T,].
However, if T, were such that ¢(T,) < {, it would contradict
the maximality in the definition (5.8), as follows. In this case

u(t) is still defined for te [T,, To+t,] , t,> O , because J

s
is locally Lipschitz continuous;and [[u(t) - n(t)} < 1, for te[To,To+t1] ,
since u and y) are continuous. Therefore +(T,)<1 camot hold.

Since e, (t) and o (t) are non-decreasing in t, it follows that
v (t) is strictly increasing in t, as soon as e (t) > 0. Lemmas
3.1, 3.2 imply that o is continuous and hence </(t) is cantinuous.

Also y(t)»® as twow . Thus it follows that T, > T , where T is

the unique solution of
Y(T) = 1., (5.11)

Note that, since e,(t) >0 as Ax>0 and NAx+», (with t fixed),

T+ as Az+0 and NAx+w. Thus y exists on an interval [0,T,]
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that becomes arbitrarily large as Ax+0 and NAx—>w . Moreover

Hult) < Hlgt) -l + Int) < 1+0(t), (5.12)

for t ¢[0, T,] . From now on we shall drop the distinction between

T, and T, and we will think of T as the upper limit of the time

interval over which the above estimates are valid. Although T < T,

the advantage of using T is that it is determined by the equation

v (T) = 1, whereas T, is not.
The above estimates are valid under the assumption that

he4'([0,7]). We shall now derive bounds for the temporal derivatives

of u under the assumption that he é"‘([o,?]), for some integer k > 1.

These may be obtained directly from (4.13). Observe that F can be

written in the fom

g(t;k’) = E[t,(oth(t)+§phz(t),av1+%pv1z,_..,avN-}%Fv:)] - Hg[h(t))‘fn“'a%]
= [(t) + Melay+3py?) - pMg ¥ (5.13)

where [(t) = F[t, @h(t)+5ph'(1),0,...,0)] = pG[h(t),0,...,0] and
Mg, M; are matrices such that “M]:“ < ¢ and (\Mcll < Cg» 35
defined in (5.4), (5.5). (We recall the notation for the product u v,
namely that (l.xv)i =uyv,, i=1,2,...,N.) The vector [ (t) is given
by (cf. definition 5.2)
22 (whit)+§pH(t), 3 i=1

i

R t)= 5, [P0 5 e+ 8 h00) - plr "+ 35 (&)t ] + :
, 0 ,if 132
Thus "(‘%)kf(tm < 9y (hm(t), ceey hm(t)) , where q_ is a

quadratic polynomial with coefficients that are polynomials in



B, v p and Ax , with rational coefficients.

From this partitioning of J we see that

Nl < g, (h(t), W(t)) + [cp(ar $pHutl + pey J i,

= @, (h(t), KV, Ju®l),
where Q1 is quadratic. Then, on differentiating (5.13) we have
G = 0 + Me(ad+ fus) - pMa &b,
so that
16K € q,[n(t),h"(e), kW] + [ecloer BN +cap] Q, (h(t),h "), Hu(th),
= Q, (hit), hlt), h2(), Jultll).
In this manner it can be shown inductively, together with the estimate

(5.12) for Jyl(t)] , that

HE) w(t)] < @ (h9M),..., ¥, 14ait), (5.14)

‘where Q is a polynamial of degree at most k+l,and t e [0,T]. Thus,
it follows that (&)'u(0)=0 if hl0)=...=h"0)=0, k= 1, and also
that

mx{\l(%)kg(t)li: te[0,71} < Qk(h(:)('f), cee, MU(T), 14 0(T)).

Comment. Bounds for these temporal derivatives can also be obtained
from (5.9) and (5.10). Proceding from that starting point, estimates

can be obtained showing that ||(&)* (u-n)(t)]|~0 for any k,t, when
Ax -+ 0 and NAx-+>.
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5.4. Bounds for the fully discrete problem

Having shoﬁn in §5.3 that the semi-discrete approximation
u is close to v} we shall now consider the ftilly discrete
approximation as effected by the prediction-correction method
(4.15). The following proposition is a direct adaptation of the

results given in Isaacson & Keller (1966, see p.388ff.].

Proposition. Let T,At >0 and let | -| be any norm on R™,

Suppose that y = y(t) - ((-34t,T], R*) is such that y = £(t,y)

on_the interval [-3At,T], that y =0 on [-3At, O] and that f is

Lipschitz continuous in Ys with constant K, viz:
1 (t,e) -f e, < Klty-¢ll , ¥ «, ¥ €R" and for te[-3at,7],

Let y", n3> 1, be determined by

—_n n- n- " n-3 n-4 -n
gt =y e L a(ssyTe sag T s —af ) s at g,

‘jn= 3“_1+2'12At(q;“ +1q£”-'—5i"-2 N f”— ) + At Qn

~ an

i_pys j Fi ; ~j . . -
where %= f(jat,y?) , I'=§(jot,4') and y’=4'= yP-yi=o.
Suppose that the errors 8" and 8" are such that

"l + 3KkAt 8] « 8 for n< T/At.
-~ 4 ~ ————

Then, for all n < T/At , it follows that

]

ol
f f_J_"_ S(nAt)“ < [(b3+ b4KAt)At4 sup | ‘:im(t)ﬂ R 9} (ST - 1)

with b, = 19/720, b, = 251/1920 and c4= j5 K(17+ 30KAt),

To apply this proposition to the scheme (4.15) we shall use the

{, norm on R" and let the errors 8§, 8" be

(5.15)
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5, h((n-j)At) - dn™] g

TS

-
(5.16)

w0 =[4 go o h'((n-jat) ~ an™' ]z

” - .
where Zi ® SNal-i (cf. (5.2)), dh is defined by (4.14) and
(8,=55,8,=-59, 8,=37, 4,= '9> ad (a,=9, a,=1, a,=-5, 4= 1)'

Thus, Q" and E" can be estimated as
19", I} < ¢ At* sup{ IN(0)]: t/bte [n-6,n+2]},

and 15 is simply a numerical constant.

A necessary condition for u to be of class £° is that he 65.
Let us therefore assume that h®(0) = n( () = ... =) (0) = 0
and that he4([0,T+2Af]) where T is the solution of (5.11), and
define h(t) = 0, u(t) = Q for t< 0. Then ye 4 ([-»,7]) and
u(t) =3(t,u(t)) for all tef-w0,T] . Moreover,

max {187,187 n< T} < cfsAt‘te[gj;fm]{'hm‘”’}-

Since the Lipschitz estimate on F is not a global estimate
the above proposition cannot be used directly for the scheme (4.15).
But an argument similar to the one used to prove the existence of
w in §5.3 can be employed to show that the proposition is applicable

to 7 over a time interval [0,7,] where T,->oc0 as At->0.

However, because we are interested in deriving a posteriori error

estimates for ¢ we shall foilow a different argument.
Let T< T and set & (T) = max { fu™, g™ : n< T/At} . Note

that & depends implicity on At, Ax and N , but we shall view these
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as being fixed for the present. Regard & as a quantity computed

by the above code. Therefore 7 is known, at least a posteriori.

)

Define

B(x) = {ge R": Nyl < max {&(r), 1+o(x)}}.
Thus, when T < T , all the quantities u", 4" and u(t) belong
to B(T) for t, nAte[0,7]. Then, define § to be equal to J
on [0,F]x B(T) and such that {(t,y) is globally Lipschitz
continuous in ¢ (for te[0,7)), with a Lipschitz canstant not
exceeding the Lipschitz constant for J rest’ricted to B(T). This
is possible because the temporal dependence and the y-dependence
in ¥ decouple (cf. 5.13). In particular, a bound for ihe Lipschitz
constant for § is afforded by

K(F) = ¢, (1 + 2max {F(F), 1+0'("7‘)}) .

Since y™, U™ and u(t), fort, nAte [0, ¥] may be viewed

equivalently as having been generated either by J or § , the above
proposition applies, yielding

cal_ \
hu’~ ulndt)l € ey (1 +§K(T)At)At‘(e 1)[ sup NSl + sup |h"’(t)]},

Ca tefo,7) ~ te[o,T+28t)
for all ng T/At . Here, c,, is a numerical constant and

o = calol), M) = 2 K(F)[17+30k(T)At],
Then, combining this estimate with (5.10) and (5.14) we have, for

0<T <T and for all n<T/At that

" - Cd!i:__ 0) ;==
Ny~ nindt)] € P(T)+cy (1t gxnmt)m‘(e——c:—‘-)[&s(h& () ...
(5.17)
RO, 14a(®) ¢ sup (W]

oM te[o,T+aat]

1]
©®
»
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“(t), 0(t), B, t, 4,8, NAX ),

The quantities e,(t) = e;(h, (t),...,h
i > 2, will be used to denote error expressions that tend to zero as
At, Ax+ 0 and NAx—~w. Thus, e, provides an estimate for the total
error in the discrete scheme. In particular, for fixed T > 0, (5.17)
shows that

|uf - nlidx, nat)] < . (DY + Ax* + e‘NAxr)

’
for all n < T/At, for i = 1,...,N and for any r such that O<r< ¥ "
The constant ¢, is independent of At, Ax and N but depends on
a,p,x,p,r,h as well as T, and it is assumed that & (‘T) stays
bounded independently of At, Ax and N.

However, the above estimates have the shortcoming that the
quantity o (T) appears exponentially on the right-hand side and
that the a priori bound (3.3) for ¢ allows the possibility of
growth in time. To obviate the possibility of such large growth

rates, we shall derive an a posteriori bound on o based on our

knowledge of G . Estimate (5.17) and the mean-value theorem

imply that

max:{ln(x,t)l : xe[o,NAx], te[O,f]} < wmax {un(nAt)": O<sne ?/At}
+J2 (8 + At) max{ INg (x,t)]+ I le,t)| : ze[O,NAX], te [Oﬁ‘]},

< G(T) + ey + 42 (Ax+B)[ R(HIT), 0(F), ) + b (F)

+ 7 (w0 (F)+ 3po(T) + 3 ],

o~

=5 (T)+ e, .

Then an upper bound for M(x,t)] for all x> 0 follows from lemma 3.2

and we have that

~ o eT _
0(T) €« &(T) +e;5 + (l;,lh‘:’('r) + h:’('r))(e = 1) ghe=r

= F(T)+ e, . : (5.18)
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As in the definition (5.11) of T, there is a unique T, > O such
that

94[#3(72),...,#:’(7,), 14+8(T,),5(T,), T, , At A, NAL] = 1, (5.19)

Furthermore, T,»o0 as At,Ax-~0 and NAx-+»w, provided that & (t)

remains finite for all finite t > O. Thus, it follows from (5.18)
that

o(t) < 1+§(t) for te[0,T,) (5.20)
and T, < T. Also we see that
lul - lidz, nat)] < e, (R (7], .., hiT), 145(T),5M), T, At,Ax,NAx ],
for 1< is N, ngT/At and0<T< T, , where e, is defined by
(5.17) and T, is given by the solution to (5.19).

Thus, in summary, we have the following result.

Theorem. Let At and Ax be positive parameters not exceeding one.

Let N be a positive integer and let T > O. Suppose that

that h(0) = 0  for i = 0, 1,...,5, and that n is the solution

to (3.1). Let u" be the solution of (4.15) and let &(T) = mx{;u'y:

1csigN,isneT/ALIf T< T as defined by (5.19), then
=X 23

mx{lq(iAx,nAt)-u{‘l : 1<igN, 1$nsT/At}

< ¢y P(RY(T), 148(T), T) Ax?

C1+&(T)T - rNdx ( o 26u(24FT _ 1)

+ ¢ (2+3M)[L (1480 + W3] s

2’5‘_( 24 (7))

rARSRE
+c‘5(1+§T<(T,)At)(3—-——'—1->[Qs(h:)lT),...,hﬁ)lT),2+3(T))+ sup w*’m\]w
34('” ! tE[O’szAt] 3 b}
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where K(T) = ¢ (5+25(T)) and ¢3(M = 2K(T) (17+30K(T) At).

%
Here, 0< r<¥*;c¢c, , ¢y, ¢, andc, areconstants

1)

{introduced previously) which depend only on «, 8, ¥, u
and in §5.3
and r ; P is defined in the proof of lemma 3.1A; C is defined

W i=o,...,5, are defined by (3.10); Q, is

in lemma 3.2; h

defined in §5.3 (cf. (5.14)).

Remarks. (i) The effects of round-off error can be incorporated
into the above theorem as follows. Let the errors 8", " of
(5.15) include the rounding error associated with the computation
of £ “, y" etc., at each time step. Suppose this additional
error is bownded by 6 (which will depend an N, Ax etc.). Then,
using the proposition as stated, the final estimate in our theorem

is modified simply by the addition of the term 6, [exp(fd(T)T)'-ﬂ/Ed(T).

(ii) A consequence of the a posteriori estimate is that

we can replace the bound o by 14+G wherever it appears in the

preceding estimates. However, ¢ and & may be small with respect

to one, say O(e) and this replacement might not be a particularly

good one. If we were to define T,, T, by the unique solutions to
Y(To)=¢ and e€,(T,)=¢ respectively, then c s&+¢ on [0,T,]

so that 0 may be replaced by ¢+& wherever it occurs. In fact,

we could define ¢ = max ¢(t) and then o can be replaced by 2¢ on
[0,T,] . Note that, regardless of the size of &> O, T, and T,

tend to infinity as Ax, At+0 and NAx+w.
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6. EXPERIMENTAL APPARATUS AND PROCEDURE

6.1 Experimental apparatus

The experiments were carried out in a uniform channel of
length 5.5 m and width 30 cm. One end of the channel was fitted
with a plane beach of slope 1:10 ; at the other end there was a
rigid plane flap which was used to generate the waves. The gap
between the flap and the sides and bed of the channel was packed
with foam plastic to restrict leakage past the wavemaker. In its
rest position the flap was vertical and normal to the walls of the
channel. It was supported by a horiiontal shaft, the axis of which
was normal to the walls of the channel at a height of about 1 m
above the bed of the channel. The shaft was free to rotate about
this axis. Since the water depth in the channel was only 3 am for
these experiments, the effective action of the paddle was very
similar to that of a plane piston. The paddle was forced in an
oscillatory motion by a long crank attached to an eccentric on the
shaft of a synchronous motor. Thus, the frequency and amplitude
of the paddle motion were fixed for any given experiment and the
arrangement was such that the paddle could be set oscillating almost
instantapeously under these conditions.

The walls and bed of the channel were made from plate glass.
The width of the channel was wniform to within 0.01 cm and the bed
was levelled so that it deviated from a mean horizontal plane by no
more than 0.040 cm. (The r.m.s. variation in depth from the mean
was 0.020 cm.) The levelling of the tank can be quite important, as
any unevenness in the bed gives rise to reflected waves and systematic
variations in depth lead to phase speeds different from those expected

for a uniform channel. The walls of the channel were lined with an
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absorbent bandage to provide even wetting at the shoreline.

Wave heights were measured by means of proximity transducers
placed near the surface of the water. (Briefly, the principle of
the instrument is that these transducers form one plate of a
capacitor, the liquid surface being the second plate. By determining
the capacitance it is possible to infer the distance of the water
surface from the transducer.) The output from these transducers was
relayed to an ultraviolet chart recorder, giving a continuous
record of the surface elevation. The frequency response of the
system extended from d.c. to about 1 kHz. Since the sensitivity
and range of a given transducer is related to its area,we have, by
choosing the appropriate transducer, recorded wave amplitudes
ranging between 0.005 cm and 0.5 an with about the same relative
accuracy over the entire range. The wave heights thus determined
were accurate to within about 2% of the maximum recorded amplitude
in any given run.

6.2. Experimental procedure

The tank was filled with water to roughly the desired depth
and surface films were skimmed off. The water was then topped up
until the level was within 0.001 cm of a reference level, set by the
tip of a pointer gauge. For all the experiments to be described
the mean water depth was 3.00 cm (the main uncertainty deriving from
the unevenness in the bed, see above). A number of transducers
(usually four) were then positioned along the channel, the distance
of each transducer from the mean position of the wavemaker being
known to within about 1 mm. Typically, the first transducer was
placed about 15 to 20 cm from the wavemaker. On the basis of linear

wavemaker theory (see Havelock 1929), we judged this distance to be
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well beyond the extent of the parasitic field of the wavemaker.
The other transducers were then placed at distances of about
120 cm, 220 an and 320 an from the wavemaker. |,

When the surface of the water in the tank was free of
disturbances the wavemaker was set in motion, executing sinusoidal
oscillations at a fixed amplitude and frequency, and the water
elevation at each of the transducers was recorded. The experiment
was stopped when the wavefront reached the beach at the far end of
the chamnel. All experiments to be described here were made at a
fixed period of 0.6930 s (i.e. wgy= 0.5014) for the motion of the
paddle, but the amplitude of the motion was changed from experiment
to experiment- by adjusting the throw on the driving crank.

Under the above conditions the theoretical wavelength of
infinitesimal waves is 36.00 am, giving a wavelength-to-depth ratio
of 12:1. (The reasons for this choice are outlined in §2.5.) It is
instructive, then, to examine typical experimental conditions in
relation to some of the theoretical assumptions for the model equations,
as described in §2.1.

(a) The wave amplitude, € , took values ranging between 0.002
_and 0.2.

(b) The wavenumber, k, , was nominally 0.5234. The main reason
for requiring that k be 'small’ is that the dispersion relations for
the model equations should be good approximations to the dispersion
relation derived from the full linear theory (see equations (2.4)).

For k = 0.5234 the phase speeds, w/k, for the three models are
Model Exact Kdv M
w /k | 0.9580 0.9543 0.9562

so that the error in the phase speed for infinitesimal waves, arising
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from the use of model M, is less than 0.2%.
(c) The parameter S (= E(A/%Qz ) took values between 0.4 and 36.
(d) The influence of surface tension is to increase the phase
speeds by about 0.1% (see Whitham 1974, p 403), which is smaller than
the differences indicated in (b) above.

6.3 Comparison procedure

The analogue data representing the wave profiles were recorded
at a chart speed of 300 mms~ so that, in one period of the wavemaker,
roughly 200 mm of chart paper moved past the marking beam. A
discretization of this signal was made by measuring the wave amplitudes
at 4 mm intervals.t The peak-to-trough amplitude of the trace on
the chart paper was adjusted to be about 60 to 70 mm (by suitably
amplifying the output from the proximity gauge) and the displacement
of the trace from its undisturbed position was measured to within
about * 0.3 mm. The above discretization corresponded to a temporal
step of 0.2401 but preliminary tests suggested this would be too
coarse for the degree of accuracy we would like for the numerical
solutions. So, in order to use a time step of half this value, a
(second-order) interpolation was made of the data obtained from the
transducer nearest the wavemaker and the resulting data set was then
used as the boundary datum,h,for the numerical computation. The
initial datum g was taken to be zero for all experiments.

1f the theoretical solution at the location X is given by

nix,t), tel0,T], and the observed wave amplitude at the same

'+ Digital recording and sampling facilities were not available and

this restricted the range of experiments we were able to make in the
present study.
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position is denoted by u(X,t), let us define an 'error' E(t), teR,

between the two sets by

M M
E(x) = Z{inix,iat-z) - v(X,LAtHAt}/’go{lv(X,iAtHAt}, (6.1)

where MAt=T . The reason for introducing T here is that

inf {E(v):TeR] gives essentially a measure of the difference in
shape between the functions r|and v,whereas the value of T that
realizes the infimum is effectively a phase error and can be used

to provide a measure of the difference in the speed of propagation
of the two waveforms. Thus," and v could have a very similar 'shape’
but give a relatively large value for E(0) by virtue of only a small
'phase' error. So, in making comparisons between theoretical

z;nd experimental data, it is useful to evaluate E(0) , inf £ and
the 'phase' error.

The numerical solutions used for the comparisons to be described
in §7 were obtained on a CYBER 175. With At=0.12005 and Ax=0.15,
as used in the computations, the error E(0) between an exact solitary-
wave solution of the model equation and the computed solution, under

conditions comparable to those of the experiment, was about 0.1%.

7.  EXPERIMENTAL RESULTS

7.1 Damping coefficient

A determination of the damping along the channel was made from
the steady wave field established after the wavemaker had been
working for a long time., Although this situation greatly sinrplifies
measurements of the wavefield, it adds the complication of having to
identify the incident and reflected wave components. However, such
a separation can be made without too much difficulty if there are no

nonlinear effects present and if the waves are monochromatic. Indeed,
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for the same conditions as those used in the present experiments,
Mahony & Pritchard (1980) measured a lapse rate rI"r)x of 038x107" V
at a wave amplitude of about 0.009. Prior to the present study

a check of the decay rate was made at an amplitude of about
0.003 and this gave the same result as that found previously.

Such a decay rate leads to a value for M in (M*) of 0.014.

7.2 Two~dimensionality of the wavefield

The magnitude of the cross-channel variations of the wave-
field were measured to see by how much the assumption of two-
dimensionality of the wave motions was violated. This measurement
was made by placing two transducers at different positions across
the channel, but at the same distance along the channel irom the
wavemaker, and the difference between the signals from each of the
transducers was formed.

The most important cross-channel structure was that of a
transverse wave motion, an example of which is given in fig. 7.1.
The waveform observed at the centre of the tank, at a distance 46.3d
from the paddle, is shown in fig. 7.1(a) and the difference between
the wave in the centre and that at a distance 5.9 am from the side
of the tank is shown in fig. 7.1(b). The transverse wave is seen to
have an amplitude of about 4% of that of the longitudinal wave and a
frequency twice that of the forcing frequency of the wavemaker,
This is roughly the scale of the transverse motions at each of the
observation points, at all amplitude settings. By moving one transducer
across the tank relative to the other, iﬁ was also found to be
representative of the size of the cross-channel variations. At the
smaller wave amplitudes used in the experiments ( & less than about

0.01) a transverse motion was also evident, but the voltage differences
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TABLE 7.1 Detailed summary of comparisons made using the model
Me + ©(x* P1Mx = Pflax = T Maxt = o, ’ o)

subject to q(o,t}=h(t), n(x,0)=0,x20,¢>0.The entries for each colum are defincd at the foot of
the tabie. The errors, defined according to (6.1), are & comparison between the two sets of data
indicated at the top of the appropriate colum, with the abbreviations taking the following meanings.

Expt: Experimental data; Dissip. Model: x=1,8=4% Y Us00Md, ¥ i y Inviscid Model: =1, 8= *, p=0,
Ye}ylinear Model: a=1, f=0, u= 0014, ¢ .

p Tepresents the error in the ‘phase’ speed given as a percentage of the 'long-wave' speed,/gd; p>0
means the cosputed speed exceeds the experimental value.
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between the two transducers were so small that they were only
comparable with the noise level and it was therefore difficult

to make any definitive statements about the frequency content of the
transverse wave. However, the relative size of the transverse
waves was certainly no greater than at the larger amplitudes.

The structure of the cross-channel motions was evidently
rather complicated, being forced by the meniscus on the side walls
or by the second harmonics of the longitudinal waves. We would
expect the transverse motions to consist mainly of a mixture of
wave modes of the form cos(mfy/b), where y 1s the cross-channel
coordinate, b is the width of the chamnel and m is a natural number.
Since waves at a frequency 2w, satisfy the dispersion relation

w= (ktanhk.)i at a value of k = 1.2043, corresponding to a wavelength
of 15.65 cm here, it would appear that the modes most easily excited
should have been those with m = 3 or 4, Waves with m = 3 would have
been able to radiate along the tank, whereas those with m = 4 would
have been decaying modes.

7.3. The main comparisons

The main results of this study are summarized in table 7.1 and
illustrated in figures 7.2 - 7.14. Several different kinds of tests
have been carried out, as indicated in the table, but only a selection
of the results are shown graphically. The eight experiments described
in the table are defined by the parameter S, which ranged between 0.38
and 36. The 'stations' A,B,C are used to reference the locations of
the transducer relative to the one used for the determination of h(t),
the actual distances between the two transducers being given in the
colum headed 'x’'. The wave amplitude € is taken to be sup{lhl},

The colum headed -logx /loge indicates the position of the station
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expressed as a power of £'. Henceforth we shall refer to the
station at which the boundary data h(t) were measured as the
'boundary station'. .

The comparisons given in colums I - III are the differences
E, as defined in §6. The upper left-hand entry at each station is
the differénce E(0) and the entry below that is ini'{E(t): teR |
The entry to the right sf=thecdaxxdwzi=3ime indicates the 'phase error'
t at which the infimum of E was realized, the error being expressed
as a percentage of the time taken for a wave of speed 1.0 to reach
the station. It is taken to be positive when the computed speed
exceeded the experimeﬁtal value. Colum I shows the comparison
between the experimental results and the wave amplitudes predicted by
(M*). The second colum shows the same kind of comparison, but no
dissipative effects were included in the computations. For the
results in the third colum the nonlinear corrections were not
included but dissipation was retained in the theoretical model.

The final two colums of the table show comparisons between
different mathematical models, so only the difference E(0) is given.
Thus, the second-last column shows the difference between the solutions
with and without dissipative effects included and the last colum gives
an indication of the importance of the nonlinear term.

In the figures to be presente& the unit used for the temporal
axes is the time step At and that used for spatial coordinates is Ax.
The diamond-shaped symbol represents the experimental data, in its
discretized form,and the continuous curves are pieéewise linear
segments linking the computed values of the wave amplitudes at the mesh
points.

The graph shown in figure 7.2 is the discretized form of the function
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h used for the experiment at S = 5.5. The various comparisons
for this experiment are shown in figures 7.3 to 7.5. Figure 7.3a
shows the wave amplitudes as a function of x at four different times
and figure 7.3b gives the comparisons between the nonlinear, dissipative
version of (M*) and the experimental results. As given in the table,
the relative differences E between the two functions were approximately
11%, 11% and 21% at stations A,B,C respectively but, after allowing
for small phase-speed corrections of about 0,.2% these differences
were reduced to about 8%, 8% and 12% respectively. The importance of
including the dissipative term is indicated by the results in figure
7.4, where the numerical solution is seen to differ markedly from the
experimental results (cf. columas II and IV of table 7.1) On the
other hand, the inclusion of the nonlinear term at this value of
S is not so important, as shown in figure 7.5 (and see colums III,V
of the table).

Note that, under these conditions, namely S = 5.5, the nonlinearity
had the effect of modifying the waveform by about 17% at a 'distance’

¢-"*  from the boundary station, whereas the dissipative effects had
modified the waveform by 47% at the same distance along the channel.

The nonlinear effects seem to have brought about only a slight flattening
of the wave troughs and sharpening of the crests, a feature that can

be seen by comparing figures 7.3b and 7.5.

An experiment for which the nonlinear effects were of only very
minor importance is shown in figure 7.6. In this experiment S = 0.95
and the nonlinear term affected the waveform by only about 2%. The
agreement between the theoretical prediction of (M*) and the observed
waveform is not quite as good as for the results at S = 5.5, the main

discrepancies apparently arising at the crests and troughs of the waves.
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~ Similiar comparisons are shown in figure 7.7 (for S = 4.5), in figure
7.8 (S = 11.8) and in figure 7.9 (for the case S = 18.1). The
experiment at S = 11.8 showed roughly the same kind of agreement as
at the smaller values of S and this was confirmed by the quantitative
comparisons. For the experiments at S = 4,5 and 5.5 the nonlinear
term had had only a small beneficial effect on the theoretical
prediction of the observations but, at S = 11.8, the inclusion of

the nohlinear term provided a significantly better model than fhe
linear dissipative theory (cf. colums I, III of the table). On

the other hand, the inviscid model gave a very poor representation

of all these expefiments. Thus, while there was some advantage to

be gained from retaining the nonlinear term under these conditions,
it was far more important that the dissipative effects be taken into
account.

The theoretical prediction of the experimental results at S = 18.1
was significantly worse than in the earlier cases. Whereas for all
‘the previous experiments the difference E was less than about 10%, it
was about 15% for the conditions at S = 18.1. One of the main reasons
for the poorer agreement at S = 18.1 is that the theoretical speed of
the leading wave appears to have been too large (see fig. 7.9), with
the result that the phase correction needed to minimize E(z) was
"quite different from that found for the earlier experiments. The
contribution from the nonlinear terms at S = 18.1, which was quite
large, is indicated in colum V of the table.

Two experiments at yet larger amplitudes were made, one at
S = 26.3 and the other at S = 35.9. For the experiment at S = 26.3
the stations A,B,C were located much nearer the boundary station than

in the other experiments so that they would not lie beyond the (formal)
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range of Qalidity of the model equation. The form of the boundary
data h(t) for this experiment is given in fig. 7.10 and the structure
of the wavefield along the channel at four times is shown in fig. 7.1la.
The comparisons between the numerical solutions and the observed
waveforms are shown in figs. 7.11b - 7.13. As indicated in the table,
the agreement between the theoretical predictions and the experiment
was not very close and the reason for this is apparent from the graphs.
The experimental results indicate the presence of a substantial amount
of second-hammonic component which is not nearly so strongly evident
in the theoretical solutions of figure 7.11b (In retrospect, this
property is also evident in the results shown in fig. 7.9 (S = 18.1),
and fig. 7.8 (S = 11.8)). At station B the agreement is seemingly much
better than at the other stations, but the reason for this appears
to be that the phase of the second harmonic is such that it reinforces
the trough and diminishes the crest of the observed waveform and so
the agreement is probably fortuitous.

The experiment at S = 35.9 gave similar kinds of comparisons
(see fig.7.14) to those shown for the experiment at S = 26.3.

7.4 Assessment

The model appears to have given a fairly good description of the
experiments at the smaller values of S, the differences being about
8 to 10%. To give more meaning to these comparisons it is worthwhile
to examine some of the sources of error. There are two kinds of
error involved: one arising from uncertainties in making the physical
measurements and the other from not matching accurately the assumptions
on which the model is based. For the present experiments, uncertainties
in the physical measurements were not more than 2%, but since quantitative

estimates of the other errors are not so easily made we shall attempt
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only a rough assessment of them. The non-uniformity of the waves

across the channel (cf. §7.2) was of the order of 4 or 5% of the

wave amplitude. This feature could influence the results both

through the inaccuracy of representing the initial data h(t) and

through the error in making the comparisons at each of the stations
A,B,C. In addition, there are uncertainties in the representation of the
dissipative effects and deficiencies arising from the use of a
one-dimensional model. Thus it does not seem as though we could

expect closer agreement than the 8-10% found at the smaller values

of S.

However, as S was increased, both the quantitative and the
qualitative agreement between the experiments and the theory
deteriorated, and it is of interest to ascertain why this should
have been the case. There appeared to be three possible causes
for the discrepancy.

(1) The dissipative effects were poorly modelled.

(ii) The presence of a non-negligible cross-wave component
(cf. § 7.2).

(iii) The dispersion relation w=(k tanh k)vzwas not very closely
approximated by (M*) for wavenumbers near kl. Thus, although the
phase speeds of waves with wavenumbers near ko were cltc})’iely approximated,
the phase speeds of the shorter wavelengths evident in[experimental
results were inaccurately represented by the model, and this feature
could account for some of the disparities.

Without developing new theory or undertaking new experiments,
it is not easy to account for (i) and (ii). We have, however, tried
to make an appraisal of our modelling of the dissipation (see §7.5)

and it is our view that this was not the main source for the
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discrepancies. It is, on the other hand, relatively straight_forward
to test the importance of (iii) (see §7.6) and the tests suggest that

this was the main source of weakness of the model with regard to the
present experiments.

7.5 Modelling the dissipation

The comparisons described in §7.3. indicate that the inclusion
of dissipation is crucial if the model is to give a reasonable
description of the experimental results. therefore, in view of the
discussion of §2.3, it seemed propitious to examine the sensitivity
of the theory to different ways of modelling the dissipative effects.

In the comparisons of §7.3 the theoretical solutions gave a
reasonably good account of the experimental results at small values
of S, but at larger values of S the agreement was not so good. A
possible explanation of this is that wavenumbers different from
k0 were being dissipated at an incorrect rate and, in particular,
the harmonics were likely to have been considerably overdamped because
the dissipation was taken to be proportional to k. This would
certainly be the case if all the damping occurred in the boundary
layers (cf. eqn.(2.5)). In order to test the sensitivity of the
model to the way the dissipative effects were represented we have
examined the consequences of using some alternative models for the
damping. For this purpose we shall work from the Ansatz that the
entire damping at wavenumber k is proportional to lkl'lz y as
suggested by the boundary-layer theory, with the constant of proport-
ionality, 0o > chosen to match the experimental decay rate at
k = ko. However it appears, at present, to be rather complicated
to implement 2 numerical scheme to solve the initial- and boundary-

value problem when the model equation includes the pseudo-differential
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operator whose symbol is Iklyz « Thus, for the purposes of this
study, we have chosen to interpolate the function po!klvz by
the polynomial v+ pk’ .  The interpolant used in §7.3, to be
referred to as the (O,ko) interpolant, matched the magnitude of (),,lkl"z
at k = 0 and at k = k . But since this interpolant will dissipate
waves with wavenumbers k:»ko at a much faster rate than that implied
by polklh , we have also considered (ko,kl) interpolation of

polklvz where k1 is the wavenumber corresponding to the frequency

2w, . This was done to provide a different representation of the
damping of the wavemodes at the frequency 2w, evident in the
experimental results (e.g. see fig. 7.11b). (We have, incidentally,
also examined the consequences of using Hermite interpolation of e,,“dv2
by the function v+pkt at k = ks i.e. the magnitude and derivative
of the functions were matched at ko‘ But since the results were
similar to those for the (k0 . kl) interpolation we shall not describe
them here.) Note that the terms v+ uk® in the dispersion relation
correspond to the terms uvn-pn,,in the differential equation.

A series of numerical experiments were carried out using boundary
data of the form h(t) = 7n, Sinw,t . To check that the dissipative
terms had been correctly coded, a preliminary test was made, using
the linear model (g=0) for which the decay rate is known theoretically.
To estimate the decay rate along the channel from the computed
solutions, the amplitudes of the wave crests were found at a given
time (t = 172.8) and were plotted as a function of their distance from
the boundary station. This graph (figure 7.15) shows that, except
for a few crests near the front of fhe wavetrain, the amplitudes of
the crests decreased at roughly the rate expected from the dispersion

relation and that the two forms of dissipation gave similar results.
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For comparison, we have also included in the graph the results of
the same experiment with no dissipative effects (i.e. v=0,u=0 ).
However, with 8= , the computed solutions differed
significantly under the various representations of the dissipation,
as illustrated in figure 7.16. This graph shows the computed
wavefields, for n, = 0.25 , at a time t = 172.8 corresponding
roughly to the duration of a laboratory experiment. The comparison
shown in this graph is that between the solutions obtained with the
(0 ,k_) interpolation of pylkl® (dotted line) and with the (ky » k)
interpolation of eolkl"‘ (full line). The substantial differences
between these two solutions suggest that it could be very important
to model the dissipative effects accurately.
To quantify the differences between these solutions we have
evaluated the quantity E = j’}::o{lm(ij,t)—q,(j Ax,tHAx} /goim,(ij,t)le},
for xe[O,NAx] , where s M, are the functions being compared. Thus, for

the comparison in fig. 7.16, the difference E = 0.313. A more complete

list of comparisons, at various values of v, and at various times,
is given in table 7.2. At small values of v, the differences were

not too large, but with 9, = 0.1 the differences had risen to about

105.
Time 57.6 115.2 172.8
e
0.005 0.034 | 0.039 0.041
0.050 0.048 | 0.068 0.078
0.100 0.065 | 0.098 0.119
0.250 0.136 | 0.248 0.313

TABLE 7.2 Values of E when (0, ko) interpolation of ()olkl"l was
compared with (ko , kl) interpolation of eo!kl"’ , for h(t) = n,sinw,t.
The computations were made with At =A4Ax = 0.15.
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The solutions given in fig.7.16 suggest that the form of
dissipation used for the comparisons of §7.3 probably dampened
the larger wavenumbers too rapidly, which could account for the
theoretical solutions not yielding the shorter wavelength components
apparent in the experimental results. Such a possibility was
checked, in the case of the experiment at S = 26.3, by using the
(k0 ’ kl) interpolation of Po Ikiv2 to model the dissipative effects.
A graph of the comparison is given in fig.7.17, the error E(O) being
0.386, 0.283, 0.378 at the stations A,B,C respectively. These errors
could be reduced to 0.368, 0.283, 0.363 with phase corrections of
0.84%, 0.07% and 0.90% at the respective stations. The agreement
is slightly worse here than in §7.3. At stations A,C the amplitudes
at the crests of the computed solutions were much smaller than those
observed experimentally, whereas at station B the computed amplitudes
of the crests were too large. But similar features to this were also
evident in the solutions with no damping, i.e. v=u=20 (see fig.7.12),
suggesting to us that the inaccurate model for the damping of the
larger wavenumbers was probably not the main source of these discrepancies.

7.6 The approximation to the dispersion relation

First we examine the dispersion relations for the various models.

These are shown graphically in fig.7.18 where the shallow-water model

(w=Xk) and (M) (as well as KdV) are compared with the 'exact' relation

w

(k tamh k)uz . By construction, thesg relations are all close at
small values of k; at k = 0.5 it is evident that the shallow-water
approximation is a poor model and at k = 1 all three models give a

poor approximation to w = (k tarh k)™,

However, for the wavenumbers arising in our experiments, the

equation
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Mo+ %M * N * VT~ Plax ~ ¥ Mxxt = 0 ()
can be used to provide a better interpolation of the 'exact'
dispersion relation than that afforded by Uﬂ).' This is achieved
through a suitable choice of the parameters «,¥ . Since the
dominant wavenumbers appear to have been those corresponding to .
the frequencies w, and 2w, , we have chosen x, ¥ so that the
phase speeds for the linear form of (Mt) (i.e. B = 0) coincided
with those for the 'exact' theory at the wavenumbers ko andvk1 .
However, the displacement effects of the boundary layer lead, not
only to a damping of the waves, but also to a correction in the
phase speed of a wavemode (cf. eqn (2.5)). Therefore, taking
the boundary-layer correction to the dispersion relation to be of
the form suggested by the theory of Kakutani & Matsuuchi (1975),

we have chosen to interpolate the dispersion relation
7! . ;]
w = (k tanh k) - &(1+1J|kl R (7.1)

with Po taken to be the empirical constant used for the comparisons
in §7.3.

Under the conditions of the present experiments this interpolation
gives « = 0.9898, ¥ = 0.1325, for which values the real part of the
dispersion relation for (Mt} is shown in fig.7.18(b), together with
that for some of the other models. The theoretical solutions that
result from the use of (Mt) for the experiment at S = 26.3 are shown -
in fig. 7.19. The spatial form of the wavetrain, which is given in
fig.7.19(a), shows a number of qualitative differences from that
obtained with (M*) (cf. fig.7.11(a)), and the compariscn between
(Mt) and the experimental results is given in fig 7.19(b). This

comparison also shows a qualitative improvement in the prediction of
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the experimental results over the comparisons given in figs. 7.11(b)
and (7.17). The quantitative comparisons for (Mt), which gave
differences for this experiment of 14%, 16% and 18% at the stations
A,B,C respectively, are sumarized in table 7.3. Indeed, (Mt)
represents all the experimental results to within about 8% except for
the experiments at S = 26.3 and S = 35.9.

A graph of the comparison at S = 35.9 is given in fig.7.20.

The leading wave at each station 1s represented very well by the
model (cf. the results of fig.7.14 for (M*), where this was not
the case), but the subsequent oscillations were modelled less
accurately. Some other comparisons made with (Mt) are given in
appendix B.

Thus, it would appear that some of the major discrepancies
between the predictions of the model and the experimental results
originated in the poor theoretical representation of the phase speeds
of some of the larger wavenumbers arising in the experiments.

8. RESWME

The theoretical model predicted the experimental results, to
as good an accuracy as could be expected, for the experiments made
at values of S ranging up to 11.8. For these five experiments it
was found that the inclusion of a dissipative term was much more
important than the inclusion of the nonlinear term, although the
inclusion of the nonlinear term was undoubtedly beneficial in
describing the observations.

At larger values of S there were features of the experiments
that were not predicted by the model. These features appear
mainly to have been associated with harmonics (generated through

nonlinear properties of the fundamental wavefield) having wavenumbers
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too large to be well represented by the small-wavenumber model.
But by introducing a modification to the basic model that represented
more accurately the phase speed of these harmqnics, the description
of the experimental yesults was significantly improved. On this basis,
we feel that the original model would provide a good description of
experiments in which the dominant wavenumber is much smaller than that
used hefe, over a fairly wide range of values of the parameter S.
Finally; it is interesting to reflect briefly in a wider context
on the implications of this study. We have used an efficient,
unconditionally-stable, explicit scheme of fourth-order accuracy in
both space and time to determine our numerical solutions. Computing
these solutions to an accuracy of about 5% took roughly 10 s on the
CYBER 175, which was about the same time as the physical run time of
the laboratory experiment. Using a faster machine and with more
efficient coding it is likely that the computation time could be
reduced by a factor of about 10. Nevertheless, these numbers suggest .
that accurate computations with more complicated equations, such as

those arising in weather forecasting, may be difficult to realize.
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APPENDIX A.  Deficencies in an approximate procedure based on

the pure initial-value problem

We wish to solve the pure initial-value problem

"Lt+‘ftx+%*l*lx’é’2xxt:0 , X€R, (M bis)
with the initial condition v (x,0) = g(x). However, the initial
datum g , to be determined empirically, is not easily obtained.
Instead, a measurement of data n(0,t) = §(t),t>0,is made and, to
recover the intended problem, the function g(t) is transformed to
an 'equivalent' spatial representation g(x) by the leading-order
approximation 7,+%,= 0 to (M). This transformation generates
a small error, of order ¢ , in the representation g(x) of the
initial data g(x), which ordinarily would not be important but,
in the present example, is equivalent to the introduction of a
forcing tem on the right-hand side of (M) of comparable size
to the nonlinear and the dispersive terms.

To illustrate the kinds of error that can arise in a
practical case, let us consider the solitary-wave solution

of (M), namely

rl(x,t) = rlo Sechz{(mo)‘h[ X +xX, - (1+-;-'rla)t]} 3 (A1)

where v, is the (maximum) wave amplitude and x, is a constant.

Suppose that the measured data g(t) is given by
v

o~ _ 2 3n, 1
g(t) =1, sech {(4+2q) [xo- (7+%’1°)t]} s
then, by choosing x, large enough, the solution to the initial-

and boundary-value problem for (M) with
n(x,00 =0 , nlot)= g(t)

(taking n(0,0) = 0.1x107"), is a close approximation to (Al) for
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x,t >0  (cf.§3, Table 4.1)
1f g(t) is now transformed to an 'equivalent' spatial form,

it follows that

1}

5x) = n, sech {( 3 )" [xo + (14 3m) 2]},

from which we see that g(x) differs from the 'exact' form of g
(the solution (Al) at time t = O) in both its shape and phase,
the phase difference between g(x) and g(x) being x,= % ﬂoxo/(’ + %q,),
Notwithstanding the phase error, let us, for the time being,
investigate the importance of the 'shape' error in g by using
g(x-x,) as the initial data for (M).
Thus, using a scheme similar to that described in {3 (which
can also be.analyzed in a similar way) we have solved numerically
the pure initial-value problem (M) with n(x,0) = g(x-x,), which
solution we denote by ?{(x,t), and have compared ¥ with the
‘exact' solution (Al).
The kinds of error that can arise in practice are shown in

figure Al. Here the wave amplitude 7, = 0.25 was chosen to
correspond approximately to the largest amplitudes used in the
laboratory experiments and the integration was carried on to about
the same time as that occué&ng in the experiments. In figure Al
the dotted line represents the function ¥ and the full line
represents the solitary-wave solution. Let E =5§o{lq(ij,t) -7l ij,t)|Ax}/

io{hl(j/_\_x’ t)| Ax} , where X € [0,NAx], measure the difference
bitween | and the 'exact' solution. The initial difference between

approximately

g and g wa;[O.lll. At time t = 32.0 the approximate solution » had
developed a distinct oscillatory tail and the difference E had increased

to 0.254. This difference then continued to increase with time, in a
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roughly linear fashion, taking values of 0.561 at 't =96.0 and
0.898 at t = 192.0. (The error E in integrating numerically a
solitary wave of amplitude 0.25 under the conditions of this
experiment was less than 0.55 x 107> at t = 192.0.) The figure
shows how the tail developed by ?L' gradually separated from the
leading wave. The speed of the leading crest of the oscillatory
tail was approximately 0.9719 at t = 192.0. On the other hand,
the leading wave of ¥ appeared to be evolving towards a solitary
wave of the form (Al) with an amplitude of approximately 0.2139,
as determined from a fourth-order interpolation of the discretized
solution. For example, the speed of this wave differed from a
solitary-wave solution (Al) of the sawe amplitude by less than

6

0.28 x 10 " at t = 192.0 and the difference E between the two

waveforms was less than 0.27 x 1073, (For this latter comparison
the crest of the solitary-wave profile was chosen to coincide with
that of the leading wave of 7 and the domain sf=imtegeatssn for
the comparison was terminated at a distance a from the crest, where
a was chosen so that the solitary waveform had decayed to 0.1x 10"4
of its maximum amplitude).

Similar results were obtained with 7, = 0.1, except that the
initial error E at t = O was 0.048 and this degraded to 0.095 at
t = 96.0 and 0.155 at t = 192.0. At t = 192.0 the amplitude of
the leading wave of # was 0.0971, but the wave was still undergoing
significant modifications at this time.

It should be noted that the above comparisons underestimate
considerably the actual errors arising with this method because we

have removed the initial phase error induced by the approximate

transformation of the data. (For example, with Mo = 0.1 and
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x, = 15.44 the error E between g(x) and g(x) was 0.197, cf.
the difference of only 0.048 between g(x) and g(x-x,).) With

more general data it would not be so easy to gliminate this

initial phase error.
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APPENDIX B,  More comparisons

We present here graphs of some of the comparisons listed
in table 7.2 between the model (Mt) and the experimental results.
The graphs shown in figures C1-C5 are for the experiments at
S = 0.95, 4.5, 5.5, 11.8 and 18.1 respectively. It can be seen
from these figures that (Mt) gives a much better overall
representation of the results than that given by (M*}, especially
with regard to the leading waves of the train.

Then finally in fig,C6 we give, for comparison with figs7.19b

and 7.12 the results of a calculation made with no dissipation.
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FIGURE CAPTIONS

FIGURL 7.1. A tracing of the transducer voltage recorded at a
distance 46.3 d from the paddle. The scaling for the
ordinate has been made dimensionless; the frequency of the
paddle was 0.6930 s ( w, = 0.5401). (a) The wave profile
at the centre of the channel. (b) The di'fference between
a transducer at the centre and one placed at a distance
5.9 cm from the side of the channel.

FIGURE 7.2. The boundary data h(t) used for the calculation
at S = 5.5,

FIGURE 7.3. The experiment at S = 5.5 is compared with (M*)
when =1, B =3 , p=0014,%=¢. (a) Computed
amplitudes as a function of x . (b) Temporal comparisons

at stations A,B,C.

FIGURE 7.4, The experiment at S =

5.5 is compared with the
inviscid version of (M*) (x=1, B =3

3. p=0,%=¢).

FIGURE 7.5. The experiment at S
version of (M*) (« =1, B

5.5 is compared with the linear
0, p=0.014, ¥=1 ).

FIGURE 7.6. The experiment at S = 0.95 compared with (M*) when
x=1, p=2, p=0.014,¥=¢.

FIGURE 7.7. The experiment at S = 4.5 is compared with (M*) when
=1:ﬂ=%! }A=0.0l4,¥= :

| oW~

FIGURE 7.8. The experiment at S = 11.8 is compared with (M*) when
x=1,p8=42, p=0.014,¥=g.

1=

FIGURE 7.9. The experiment at S ='18.1 is compared with (M*) when
x=1,8= -2- , 0=0.014,%¥=5 .
FIGURE 7.10. The boundary data h(t) used for the calculation at
S = 26.3. .

FIGURE 7.11. The experiment at S = 26.3 is compared with (M*) when
w=1, p=3 , n=0.014, ¥=5. (a) Computed amplitudes
as a function of x . (b) Temporal comparisons.

FIGURE 7.12. The experiment at S ='26.3 is compared with the
inviscid version,of (M*) (x=1,8=3,u=0,¥=¢).

FIGURE 7.13. The experiment at S = 26.3 is compared with the linear
version of M*) (« =1,8=0,p=0.014¥=1}.

FIGURE 7.14. The experiment at S = 35.9 is compared with (M*) when
x=1,8=3,u=0014,%=%. ‘

FIGURE 7.15. Computed amplitudes of wave crests as a function of :
distance from the boundary station for linear models ( B = 0),
with boundary data h(t) =%, sinw,t . Time t = 172.8. O: inviscid
model (v =0, u=0); @: v =0, u=0.013 A ve=
0.24 x 107 , p=0.11x10", The slopes of the straight
lines are -( v + pk3 ). The computations were made with At=Ax=0.15.
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FIGURE 7.16. Computed wavefields at time t = 172.8 for nonlinear
models (B = -g- ) with boundary data h(t) = 0.25 sin w,t .
py=20, H: 0.014 ((O, k ) interpolation of e lklvz );
-2 © -2 °
: » =0.380 x 1074, M =0.168 » 10°° ((k,, k,)
interpolation). The computations were made with At=Ax =0.15.

FIGURE 7.17. The experiment at S = 26.3 is compared with (Mt) (see
§7.6)when o =1, B =32 , v =0.30x107, u =0.168

x107%, ¥=4.

FIGURE 7.18. Graphs of the linear dispersion relations for various

models. (a) =——-——: shallow-water model, w =k ; ———:'exact'
relation, w = (ktanhk)"; oo : model (M), w =k/(1+ik );
—————: (KdV), w =k(l-zk). (b) Magnified version

of (3),———: W=k ———— uo:(ktcml«tk)"2 P —

w = 0.9898K/(1+ 0.1325k ); =-r--resescees : w=k/(1+ k).

FIGURE 7.19. The experiment at S = 26.3 is compared with (Mt) when
x =0.9898, 8 =% , v =0.340x 1072, p = 0.168 x 1077,
¥ =0.1325. (a)Computed amplitudes as a function of =x.
(b) Temporal comparisons.

FIGURE 7.20. The experiment at S = 35.9 is compared with (Mt) when
x=0.9898, § =3, » =0.340 x 1075, p =0.168 x 1072,
¥ = 0.1325.

FIGURE Al. The solitary-wave solution of (M) (full line) is compared
with the solution to (M) with the initial data 7(x,0) = '§(x-xl)
(dotted lines). The amplitude v, = 0.25 3 the computations
were made with At =Ax= 0.16.

FIGURE Bl. The experiment at S
«=0.9898, B =3, v
Y= 0.1325.

0.95 is compared with (Mt) when
0.340 x 1072, p = 0.168 x 1077,

FIGURE B2. The experiment at S
«=0.9898, B =32, v
¥=0.1325

4.5 is compared with (Mt) when
0.340 x 1072, u=0.168x107,
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FIGURE B3. The experiment at S = 5.5 is compared with (Mt) when
«=0.9898, f =4, v =0.340x10°, p=0.168x10",
¥ = 0.1325. '

FIGURE B4. The experiment at S = 11.8 is compared with (Mt) when

x=0.9898, f =3 , »=0.30x102, p=0.168 x 107

¥=0.1325.

FIGURE BS. The experiment at S = 18.1 is compared with (Mt) when

€=0.9898, B =3, » =030x107, p

’

ft

0.168 x 10'2,
¥=0.1325.

FIGURE B6. The experiment at S = 26,3 is compared with the inviscid

version of (M) ( & =0.9898, =3, v =0, p =0, ¥ =0.1325).
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